• Title/Summary/Keyword: Heavy press

Search Result 224, Processing Time 0.031 seconds

Automated static condensation method for local analysis of large finite element models

  • Boo, Seung-Hwan;Oh, Min-Han
    • Structural Engineering and Mechanics
    • /
    • v.61 no.6
    • /
    • pp.807-816
    • /
    • 2017
  • In this paper, we introduce an efficient new model reduction method, named the automated static condensation method, which is developed for the local analysis of large finite element models. The algebraic multilevel substructuring procedure is modified appropriately, and then applied to the original static condensation method. The retained substructure, which is the local finite element model to be analyzed, is defined, and then the remaining part of the global model is automatically partitioned into many omitted substructures in an algebraic perspective. For an efficient condensation procedure, a substructural tree diagram and substructural sets are established. Using these, the omitted substructures are sequentially condensed into the retained substructure to construct the reduced model. Using several large practical engineering problems, the performance of the proposed method is demonstrated in terms of its solution accuracy and computational efficiency, compared to the original static condensation method and the superelement technique.

An Intelligent bridge with an advanced monitoring system and smart control techniques

  • Miyamoto, Ayaho;Motoshita, Minoru
    • Smart Structures and Systems
    • /
    • v.19 no.6
    • /
    • pp.587-599
    • /
    • 2017
  • This paper introduces an approach to the realization of an ICT-based bridge remote monitoring system that enables real-time monitoring and controlled adjustments for unexpected heavy loads and also for damaging earthquakes or typhoons. In this paper, an integrated bridge remote monitoring system called the "Intelligent Bridge", which consists of a stand-alone monitoring system (SMS) and a web-based Internet monitoring system(IMS), was developed for not only bridge maintenance but also as an application for a para-stressing bridge system. To verify the possibility of controlling the actual structural performance of an "Intelligent Bridge", a model 2-span continuous cable-stayed bridge with adjustable cables was constructed. The experimental results demonstrate that the implemented monitoring system supplies detailed and accurate information about bridge behaviour for further evaluation and diagnosis, and it also opens up prospects for future application of a web-based remote system to actually adjust in-service bridges under field conditions.

Modeling of shallow landslides in an unsaturated soil slope using a coupled model

  • Kim, Yongmin;Jeong, Sangseom
    • Geomechanics and Engineering
    • /
    • v.13 no.2
    • /
    • pp.353-370
    • /
    • 2017
  • This paper presents a case study and numerical investigation to study the hydro-mechanical response of a shallow landslide in unsaturated slopes subjected to rainfall infiltration using a coupled model. The coupled model was interpreted in details by expressing the balance equations for soil mixture and the coupled constitutive equations. The coupled model was verified against experimental data from the shearing-infiltration triaxial tests. A real case of shallow landslide occurred on Mt. Umyeonsan, Seoul, Korea was employed to explore the influence of rainfall infiltration on the slope stability during heavy rainfall. Numerical results showed that the coupled model accurately predicted the poromechanical behavior of a rainfall-induced landslide by simultaneously linking seepage and stress-strain problems. It was also found that the coupled model properly described progress failure of a slope in a highly transient condition. Through the comparisons between the coupled and uncoupled models, the coupled model provided more realistic analysis results under rainfall. Consequently, the coupled model was found to be feasible for the stability and seepage analysis of practical engineering problems.

Research on non-destructive testing technology for existing bridge pile foundations

  • Zhang, Xue-feng;Ni, Ying-sheng;Song, Chunxia;Xu, Dong
    • Structural Monitoring and Maintenance
    • /
    • v.7 no.1
    • /
    • pp.43-58
    • /
    • 2020
  • Pile foundations of existing bridges lie in soil and water environment for long term and endure relatively heavy vertical loads, thus prone to damages, especially after stricken by external forces, such as earthquake, collision, soil heap load and etc., and the piles may be injured to certain degrees as well. There is a relatively complete technical system for quality inspection of new bridge pile foundations without structures on the top. However, there is no mature technical standard in the engineering community for the non-destructive testing technology specific to the existing bridge pile foundations. The quality of bridge pile foundations has always been a major problem that plagues bridge maintenance. On the basis of many years' experiences in test engineering and theoretical studies, this study developed a new type of detection technology and equipment for the existing bridge piles.

Numerical simulation of the crack propagation behavior in 3D elastic body

  • Taniguchi, Takeo;Miyaji, Akihiko;Suetsugu, Takeshi;Matsunaga, Shohgo
    • Structural Engineering and Mechanics
    • /
    • v.2 no.3
    • /
    • pp.227-244
    • /
    • 1994
  • The purpose of this investigation is to propose a numerical simulation method of the crack propagation behavior in 3-dimensionl elastic body. The simulation method is based on the displacement-type finite element method, and the linear fracture theory is introduced. The results from the proposed method are compared with those from the structural experiments, and the good coincidences between them are shown in this paper. At the same time, 2-dimensional analysis is also done, and the results are compared with those obtained from 3-dimensional analysis and the structural experiments.

Interband optical properties in wide band gap group-III nitride quantum dots

  • Bala, K. Jaya;Peter, A. John
    • Advances in nano research
    • /
    • v.3 no.1
    • /
    • pp.13-27
    • /
    • 2015
  • Size dependent emission properties and the interband optical transition energies in group-III nitride based quantum dots are investigated taking into account the geometrical confinement. Exciton binding energy and the optical transition energy in $Ga_{0.9}In_{0.1}N$/GaN and $Al_{0.395}In_{0.605}N$/AlN quantum dots are studied. The largest intersubband transition energies of electron and heavy hole with the consideration of geometrical confinement are brought out. The interband optical transition energies in the quantum dots are studied. The exciton oscillator strength as a function of dot radius in the quantum dots is computed. The interband optical absorption coefficients in GaInN/GaN and AlInN/AlN quantum dots, for the constant radius, are investigated. The result shows that the largest intersubband energy of 41% (10%) enhancement has been observed when the size of the dot radius is reduced from $50{\AA}$ to $25{\AA}$ of $Ga_{0.9}In_{0.1}N$/GaN ($Al_{0.395}In_{0.605}N$/AlN) quantum dot.

Platinum nanocomposites and its applications: A review

  • Sharon, Madhuri;Nandgavkar, Isaac;Sharon, Maheshwar
    • Advances in materials Research
    • /
    • v.6 no.2
    • /
    • pp.129-153
    • /
    • 2017
  • Platinum is a transition metal that is very resistant to corrosion. It is used as catalyst for converting methyl alcohol to formaldehyde, as catalytic converter in cars, for hydrocracking of heavy oils, in Fuel Cell devices etc. Moreover, Platinum compounds are important ingredient for cancer chemotherapy drugs. The nano forms of Platinum due to its unique physico-chemical properties that are not found in its bulk counterpart, has been found to be of great importance in electronics, optoelectronics, enzyme immobilization etc. The stability of Platinum nanoparticles has supported its use for the development of efficient and durable proton exchange membrane Fuel Cells. The present review concentrates on the use of Platinum conjugated with various metal or compounds, to fabricate nanocomposites, to enhance the efficiency of Platinum nanoparticles. The recent advances in the synthesis methods of different Platinum-based nanocomposites and their applications in Fuel Cell, sensors, bioimaging, light emitting diode, dye sensitized solar cell, hydrogen generation and in biosystems has also been discussed.

Buckling analysis of complex structures with refined model built of frame and shell finite elements

  • Hajdo, Emina;Ibrahimbegovic, Adnan;Dolarevic, Samir
    • Coupled systems mechanics
    • /
    • v.9 no.1
    • /
    • pp.29-46
    • /
    • 2020
  • In this paper we deal with stability problems of any complex structure that can be modeled by beam and shell finite elements. We use for illustration the steel plate girders, which are used in bridge construction, and in industrial halls or building construction. Long spans, slender cross sections exposed to heavy loads, are all critical design points engineers must take into account. Knowing the critical load that will cause lateral torsional buckling of the girder, or load that can lead to web buckling, as an important scenario to consider in a design process.Many of such problem, including lateral torsional buckling with influence of lateral supports and their spacing on critical load can be solved by the proposed method. An illustrative study of web buckling also includes effects of position and spacing of transverse and longitudinal web stiffeners, where stiffeners can be modelled optionally using shell or frame elements.

A new bridge-vehicle system part I: Formulation and validation

  • Chan, Tommy H.T.;Yu, Ling;Yung, T.H.;Chan, Jeffrey H.F.
    • Structural Engineering and Mechanics
    • /
    • v.15 no.1
    • /
    • pp.1-19
    • /
    • 2003
  • This paper presents the formulation of a new bridge-vehicle system with validation using the field data. Both pitching and twisting modes of the vehicle are considered in the contribution of the dynamic effects in the bridge responses. A heavy vehicle was hired as a control vehicle with known axle weight, axle spacing and spring coefficients. The measured responses were generated from the control vehicle running at a particular speed at a test span at Ma Tau Wai Flyover. The measured responses were acquired using strain gauges installed beneath the girder beams of the test bridge. The simulated responses were generated using BRVEAN that is a self-developed program based on the proposed bridge-vehicle system. The validation shows that the bridge model is valid for representing the test bridge and the governing equations are valid for representing the motion of moving vehicles.

A new block assembly method for shipbuilding at sea

  • Zhang, Bilin;Boo, Seung-Hwan;Kim, Jin-Gyun
    • Structural Engineering and Mechanics
    • /
    • v.54 no.5
    • /
    • pp.999-1016
    • /
    • 2015
  • In this paper, we introduce a new method for assembly of shipbuilding blocks at sea and present its feasibility focusing on structural safety. The core concept of this method is to assemble ship building blocks by use of bolting, gluing and welding techniques at sea without dock facilities. Due to its independence of dock facilities, shipyard construction capability could be increased considerably by the proposed method. To show the structural safety of this method, a bulk carrier and an oil tanker were employed, and we investigated the structural behavior of those ships to which the new block assembly method was applied. The ship hull models attached with connective parts are analyzed in detail through finite element analyses, and the cargo capacity of the bulk carrier is briefly discussed as well. The results of these studies show the potential for applying this new block assembly method to practical shipbuilding.