• Title/Summary/Keyword: Heavy metal ions

Search Result 502, Processing Time 0.033 seconds

The Removal of Heavy Metals in Aqueous Solution by Hydroxyapatite (Apatite를 이용한 중금속 제거)

  • 강전택;정기호
    • Journal of Environmental Science International
    • /
    • v.9 no.4
    • /
    • pp.325-330
    • /
    • 2000
  • The hydroxyapatite (HAp) for the present study was prepared by precipitation method in semiconductor fabrication and the crystallized at ambient to 95$0^{\circ}C$ for 30min in electric furnace. The ion-exchange characteristics of HAp for various heavy metal ions such as $Cd^{2+}, Cu^{2+}, Mn^{2+}, Zn^{2+}, Fe^{2+}, Pb^{2+}, Al^{3+}, and Cr^{6+}$ in aqueous solution has been investigated. The removal ratio of various metal ions for HAp were investigated with regard to reaction time, concentration of standard solution, amount of HAp and pH of solution. The order of the ions exchanged amount was as follws: $Pb^{2+}, Fe^{3+}>Cu^{2+}>Zn^{2+}>Al^{3+}>Cd^{2+}>Mn^{2+}>Cr^{6+}. The Pb^{2+}$ ion was readily removed by the Hap, even in the strongly acidic region. The maximum amount of the ion-exchange equilibrium for $Pb^{2+}$ ion was about 45 mg/gram of HAp. The HAp would seem to be possible agent for the removal of heavy metal ions in waste water by recycling of waste sludge in semiconductor fabrication.

  • PDF

Biosorption Characteristics of Heavy Metal by Algae, Spirulina in the Batch Reactor (회분식 반응기에서 조류 Spirulina 균체내 중금속 흡착 특성)

  • 신택수;주소영;김재용
    • Journal of environmental and Sanitary engineering
    • /
    • v.13 no.1
    • /
    • pp.112-122
    • /
    • 1998
  • In recent years the accumulation of heavy metals in microorganisms, the biosorption has received much attention because of various environmental application. We have been to research the biosorption characteristics using algae, Spirulina, for the removal of heavy metal ions in industrial and polluted waters. In the adsorption of single heavy metal ions, the adsorption equilibrium was reached within 10min., and optimum pH and reaction temperature were 4.5-5 and 30-35$\circ $C, respectively. Under the above conditions, the maximum amounts of Pb, Cu, and Cd adsorbed to the unit weight of Spirulina were 107.6mg/g, 78.0mg/g, and 65.6mg/g, and three values were 1.45, 1.56, and 1.26 times higher than those adsorbed to the unit weight of activated carbon under same conditions. The adsorption kinetics of Pb, Cu, and Cd were fitted very well to the Freundlich isotherm and BET isotherm. Biosorption experiments in single ion solutions and binary ions solutions showed higher removal efficiency in the single ion solutions than in binary ions solutions.

  • PDF

Removal Efficiency of Toxic Heavy Metal Ions in Wastewater by Double Surface-Modified Activated Carbon

  • Park, Geun-Il;Kim, In-Tae;Song, Kee-Chan;Kim, Kwang-Wook;Kim, Joon-Hyung;Yoo, Jae-Hyung
    • Proceedings of the IEEK Conference
    • /
    • 2001.10a
    • /
    • pp.307-312
    • /
    • 2001
  • Adsorption capacities of toxic heavy metal ions using as-received carbon(AC), single and double surface-modified activated carbon(OAC and DSMC) in wide pH ranges are extensively evaluated. Physical and chemical properties of surface-modified activated carbons are evaluated through BET analysis, surface acidity and oxides measurements. Based oil tile adsorption isotherms of Pb, Cd and Cr ions by AC, OAC and DSMC, the adsorption amount on DSMC was obviously higher than that on the other carbons. Breakthrough behaviors of ternary metal ions in a column packed with three kinds of carbon were also characterized with respect to the variations of the influent pH and concentration. The adsorption capacity of DSMC in a fixed bed stood a favorable comparison with that of as-received carbon.

  • PDF

The Synthetic Melanin Nanoparticles Having An Excellent Binding Capacity of Heavy Metal Ions

  • Kim, Da Jeong;Ju, Kuk-Youn;Lee, Jin-Kyu
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.11
    • /
    • pp.3788-3792
    • /
    • 2012
  • Spherical-shape melanin nanoparticles with good water-dispersibility were successfully synthesized by a simple oxidation polymerization of 3,4-dihydroxy-phenylalanin (DOPA) with $KMnO_4$. Similar features to those known from natural and synthetic melanin polymers were observed from prepared melanin nanoparticles by FT-IR, UV-Vis., and ESR spectroscopic methods. Their binding ability with several heavy metal ions from aqueous solution was quantitatively investigated, and the maximum binding capacities with melanin nanoparticles to lead, copper, and cadmium ions were obtained as 2.45, 2.17 and 1.88 mmol/g, respectively, which are much larger values than those reported from natural and synthetic melanin polymers. The large binding capacity and fast binding rate of melanin nanoparticles to metal ions can make them an excellent candidate for the remediation of contaminated water.

Detection of Heavy Metal Ions by the Cuvette Assay Measuring Urease Inhibitory Activity (Urease 저해활성 측정 cuvette assay에 의한 중금속 이온 검출)

  • Kim, Dong-Kyung;Park, Kyung-Rim;Kang, Eun-Mi;Park, In-Seon;Kim, Nam-Soo
    • Applied Biological Chemistry
    • /
    • v.46 no.2
    • /
    • pp.74-78
    • /
    • 2003
  • To determine the urease inhibitory activity of various heavy metal ions, a photometric cuvette assay for measuring ammonia production was developed. In this assay, the absorbance values at 630 m were linearly increased according to the ammonia concentrations up to 3.0 mg/l (r : 0.998). The urease inhibitions upon addition of a single species of heavy metal ions were in the decreasing order of Hg(II) > Pb(II) > Cu(II) > Cd(II) > Zn(II) ions. As expected, the urease inhibitions at a fixed concentration of a single species and at varying concentrations of other species occurred in the additive way. The above results show the applicability of the current method to the selective detection on Hg(II) ions as well as the screening of heavy metal ions possibly present at various samples.

A Study on the Fixed-bed Adsorption of Heavy Metal Ions over Chitosan Bead (키토산 비드에 의한 중금속 이온의 고정층 흡착에 관한 연구)

  • Chung, Kyong-Hwan
    • Applied Chemistry for Engineering
    • /
    • v.10 no.1
    • /
    • pp.166-172
    • /
    • 1999
  • Fixed-bed adsorption of metal ions on chitosan bead was studied to remove heavy metal ions in waste water. Chitin was extracted from carb shell and chitosan was prepared by deacetylation of the chitin. The chitosan in bead was used as an adsorbent for heavy metal ions. Freundlich and Langmuir isotherm was determined from the experimental results of equilibrium adsorption for individual metal ion ($Cu^{2+}$, $Co^{2+}$, $Ni^{2+}$) on chitosan bead. Adsorption strength of metal ions decreased in the order of $Cu^{2+}$>$Co^{2+}$>$Ni^{2+}$ ion. Breakthrough curves of single and multicomponent adsorption for metal ions were obtained from the experimental results of fixed-bed adsorption. The breakthrough curves were analyzed by simulation with fixed-bed adsorption equation based on LDFA (linear driving force approximation) adopted LAS (ideal adsorbed solution) theory which can predict multi-component adsorption isotherm from individual adsorption isotherm. The behavior of fixed bed adsorption for single and multi-component system could be nicely simulated by the equation.

  • PDF

Neutralization and removal of heavy metal ions in Plating wastewater utilizing Oyster Shells (굴껍질을 이용한 도금폐수의 중화 및 중금속 이온 제거)

  • 성낙창;김은호;김정권;김형석
    • Journal of Environmental Health Sciences
    • /
    • v.22 no.3
    • /
    • pp.81-87
    • /
    • 1996
  • The purpose of this research is to examine the utilization of oyster shells for neutralization and removal of heavy metal ions in plating wastewater, because oyster shells have been known to be very porous, to have high specific surface area and to have alkaline minerals such as calcium and magnesium. The results obtianed from this research showed that oyster shells had a buffer capacity to neutralize an acidic.alkali system in plating wastewater. Generally, it could be showed that the removal efficiencies of heavy metal ions were very influenced by reaction times and oyster shell dosages. In point of ocean waste, if oyster shells substituted for a valuable adsorbent such as actviated carbon, they could look forward to an expected economical effect.

  • PDF

Adsorption Characteristics of Ni2+, Zn2+ and Cr3+ by Zeolite Synthesized from Jeju Scoria (제주 스코리아로부터 합성한 제올라이트에 의한 Ni2+, Zn2+ 및 Cr3+의 흡착 특성)

  • Kim, Jung-Tae;Lee, Chang-Han;Kam, Sang-Kyu
    • Journal of Environmental Science International
    • /
    • v.29 no.7
    • /
    • pp.739-748
    • /
    • 2020
  • The characteristics of heavy metal ion (Ni2+, Zn2+, and Cr3+) adsorption by zeolite synthesized from Jeju scoria using the fusion and hydrothermal method, were studied. The synthetic zeolite was identified as a Na-A zeolite by X-ray diffraction analysis and scanning electron microscopy images. The equilibrium of heavy metal ion adsorption by synthetic zeolite was reached within 60 min for Ni2+ and Zn2+, and 90 min for Cr3+. The uptake of heavy metal ions increased with increasing pH in the range of pH 3-6 and the uptake decreased in the order of Cr3+ > Zn2+ > Ni2+. For initial heavy metal concentrations of 20-250 mg/L at nonadjusted pH, the adsoption of heavy metal ions was well described by the pseudo second-order kinetic model and was well fitted by the Langmuir isotherm model. The maximum uptake of heavy metal ions obtained from the Langmuir model, decreased in the order of Zn2+ > Ni2+ > Cr3+, differing from the effect of pH on the uptake, which was mainly based on the different pH of the solutions.

Removal of aqueous heavy metals (Pb, Cu, Zn, Cd) by scoria from Jeju, Korea

  • Kwon, Jang-Soon;Yun, Seong-Taek
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2004.04a
    • /
    • pp.380-383
    • /
    • 2004
  • Heavy metal release from wastewater is a serious environmental problem, and therefore, various wastewater treatment techniques have been developed. Among the techniques, sorption technique is most attractive. Considerable researches have been recently focused on finding out inexpensive sorbents, especially from various natural materials. In order to evaluate the applicability of the scoria taken from the Jeju Island, Korea to remove heavy metals (Pb, Cu, Zn, Cd) from aqueous solutions, equilibrium sorption experiments were conducted in this study. In equilibrium tests, powdered activated carbon (PAC), one of the most commonly used sorbents, was also tested to compare the effectiveness of the Jeju scoria with that of PAC. The Jeju scoria had larger adsorption capacity and affinity for metal ions (Pb(II), Cu(II), Zn(II), Cd(II)) than PAC. The sorption parameters of the two sorbents were evaluated by using both the Langmuir and Freundlich isotherms, and the sorption data were better fitted to the Freundlich isotherm. In addition, the sorption behavior of metal ions (Pb(II), Cu(II), Zn(II), Cd(II)) onto the scoria displayed a typical characteristic of the cation sorption. The removal of metal ions decreased at a lower pH condition due to competition with hydrogen ions for the sorption sites of Jeju scoria, while the removal increased at a high pH condition due to hydroxide precipitation.

  • PDF

Selective Removal of Toxic Heavy Metals in Fe-Coagulants (철염 응집제 중 유독성 중금속의 선택적 제거)

  • 박상원
    • Journal of Environmental Science International
    • /
    • v.8 no.3
    • /
    • pp.393-397
    • /
    • 1999
  • Among various reactions which metal sulfides can undergo in the reducing environment, the lattice exchange reaction was examined in a attempt to selectively remove heavy metal ions contained in the Fe-Coagulants acid solution. We have examined Zeta potential along with pHs to investigate surface characteristics of ${FeS}_{(s)}$. As a result of this experiment, zero point charge(ZPC) of FeS is pH 7 and zeta potential which resulted from solid solution reaction between Pb(II) and ${FeS}_{(s)}$ is similar to that of ${PbS}_{(s)}$. Solubility characteristics of ${FeS}_{(s)}$ is appeared to that dissolved Fe(II) concentration increased in less than pH 4, and also increased with increasing heavy metal concentration. Various heavy metal ions(Pb(II), Cu(II), Zn(II)) contained in Fe-coagulants acid solution were removed selectively more than ninety-five percent in the rang of pH 2.5~10 by ${FeS}_{(s)}$. From the above experiments, therefore, We could know that the products of reaction between heavy metal ions and $FeS_{(S)}$ are mental sulfide such as $PbS_{(S)}$, $CuS_{(S)}$ and $ZnS_{(S)}$.

  • PDF