• Title/Summary/Keyword: Heavy metal fraction

Search Result 128, Processing Time 0.033 seconds

Fraction and Mobility of Heavy Metals in the abandoned closed mine near Okdong stream sediments

  • Kim, Hee-Joung;Yang, Jae;Lee, Jai-Young;Jun, Sang-Ho
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2003.09a
    • /
    • pp.56-63
    • /
    • 2003
  • Fractional composition and mobility of sediments some heavy metals in Okdong stream are investigated. The fractional scheme for sediment heavy metal was made for five chemically defined heavy metal forms as adsorbed fraction, carbonate fraction, reducible fraction, organic fraction, and residual fraction (Tessier et at., 1979). The most abundant fraction of the sediment heavy metal is reducible and secondly abundant organic fraction. Adsorbed fraction is minor part of the total heavy metals. Mobilization of sediment heavy metals in stream Okdong is occur 19.8∼56.7% of total cadmium concentrate. The most abundant fraction of the sediment metal is organic fraction in Cu, Pb metals investigated. Labile fraction of sediment metals are 0.5%∼48.5% of total Zn, 2.6%∼48.1% of total Pb, 0.2∼36.9% of total Cu respectively, Most of labile fraction consists of reducible fraction for Cd, Zn, adsorbed fraction for Pb, reducible fraction for Cu, adsorbed fraction for Ni. The Mobilization of Zn and Cu is most likely to occur when oxygen depletes and that of Pb and Ni occurs when physical impact, oxygen depletion and pH reduction.

  • PDF

Some heavy metal concentration of surface sediments from the southwestern coast of Korea (서남해안 연근해저 퇴적물의 중금속 함량 및 분포)

  • 전수경;조영길
    • Journal of Environmental Science International
    • /
    • v.11 no.12
    • /
    • pp.1299-1305
    • /
    • 2002
  • Thirty sediment samples of the <63${\mu}{\textrm}{m}$ fraction collected from the southwestern coast of Korea were analysed for their heavy metal (Fe, Mn, Cr, Co, Cu, Ni, Zn and Pb) concentration. The results show that sediment texture plays a controlling role on the total metal concentrations and their spatial distribution. A single lM HCl extraction procedure was used in order to assess the environmental risk of heavy metals in bottom sediments. The non-residual fraction was the most abundant pool for Mn and Pb in most samples, which means that this metals are highly avaliable in these sediments. Cr, Ni, Fe, Co, Zn and Cu were mainly associated with the residual fraction, suggesting that their concentrations are controlled significantly by transport processes with the fine particles as carriers from diffuse pollution source. Concentration enrichment ratios(CER) were calculated from the non-residual contents and their values allowed us to classify the sediments according to their environmental risk.

Characteristics of Heavy Metal Distribution in Bottom Sdeiments of Tributaries of the Han River (한강유역 주요지천의 저질내 중금속 분포)

  • 허준무;박종안
    • Journal of environmental and Sanitary engineering
    • /
    • v.14 no.3
    • /
    • pp.71-79
    • /
    • 1999
  • The Hg, Cd, Cu, Mn, and Zn in bottom sediments of han river and their tributaries were analyzed to evaluate the seasonal variations of heavy metals. Leaching tests were also performed for estimation of availability of heavy metal retention in sediments. Sediments of Anyang stream showed the highest concentration of heavy metal in the sediment samples. Heavy metal concentration was heavily depended upon the heavy metal source of tributaries of han river and particle distribution. Clay and silt had higher concentration of heavy metals than very fine san and fine sand due to difference of retention capability of heavy metal. The highest concentration of heavy metal was observed in bottom sediments irrespective of sites investigated. Heavy metals and ignition loss showed positive relations, and higher relationships with p-value <0.01 were observed between copper and lead. copper and zinc, and depended on the pH condition of leaching test, and leachated fraction increased with decrease of the pH.

  • PDF

Study on Heavy Metal Contamination Characteristics and Plant Bioavailability for Soils in the Janghang Smelter Area (화학적 추출법에 따른 (구)장항제련소 주변 토양의 중금속 오염특성 분석과 식물 전이 가능량 예측)

  • Jeong, Seul-Ki;An, Jin-Sung;Kim, Young-Jin;Kim, Geon-Ha;Choi, Sang-Il;Nam, Kyoung-Phile
    • Journal of Soil and Groundwater Environment
    • /
    • v.16 no.1
    • /
    • pp.42-50
    • /
    • 2011
  • Potential risk of heavy metals to various receptors including humans depends on the bioavailability of the heavy metals in soil. In this study, the heavy metal extraction methods using 0.1N HCl and aqua regia were compared with the Tessier's sequential extraction method to assess whether these two methods can be used to determine the plant-available heavy metal concentrations. The contamination characteristics of copper (Cu), cadmium (Cd), lead (Pb), and arsenic (As) found in soils collected from 75 sites around the closed Janghang smelter were analyzed by extracting heavy metals using 0.1 N HCl, aqua regia, and the Tessier's sequential extraction method. The portion of metals bioavailable to plants is considered as the sum of the fraction 1 (exchangeable) and the fraction 2 (carbonates binding) of the Tessier's 5-step sequential extraction method, which were determined to be 3.1 ${\pm}$ 3.82, 0.6 ${\pm}$ 0.15, 20.6 ${\pm}$ 18.78, and 7.0 ${\pm}$ 6.48 mg/kg for Cu, Cd, Pb, and As, respectively, in this study. When the extraction using aqua regia and the Tessier's extraction method were compared, the extracted Cu and Pb concentrations did not show significant differences, whereas the extracted Cd and As concentrations showed significant differences. These results indicate that the portion of Cd and As in the fraction 5 of the Tessier's sequential extraction can not be extracted using aqua regia. Using aqua regia, which is the official test method, higher concentrations of Cu, Cd, Pb and As were extracted than the sum of the fraction 1 and 2. The results show that only 9, 40, 39 and 10% of Cu, Cd, Pb and As using aqua regia can be uptaken by plants (i.e., plant-available). Using 0.1N HCl, the portion of Cd equivalent to about 66% the fraction 1 could be extracted, while, with Pb, the portion of the fraction 1 and about 90% of the fraction 2 could be extracted. With As, the portion equivalent to the fraction 1, 2 and 79% of the fraction 3 was extracted, while with Cu, the portion equivalent to the fraction 1, 2, 3 and 20% of the fraction 4 was extracted using 0.1N HCl.

Efficiency of Chemical Amendments for Reducing Ecotoxicity in Heavy Metal Polluted Agricultural Fields

  • Choi, Won-Suk;Kim, Dae-Bok;Hong, Young-Kyu;Kim, Soon-Oh;Lee, Sang-Woo;Lee, Byung-Tae;Lee, Sang-Hwan;Park, Mi-Jung;Kim, Sung-Chul
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.49 no.1
    • /
    • pp.75-80
    • /
    • 2016
  • This study was conducted to evaluate effect of chemical amendments on reducing bioavailable fraction of heavy metals in soil along with ecotoxicological effect on earthworms, Eisenia fetida. Three different chemical amendments, lime (L), steel slag (SS), and acid mine drainage sludge (AMDS), were applied with varied application ratio (1, 3, 5%). Heavy metal contaminated soil was mixed with chemical amedments and earthworms, Eisenia fetida, were cultivated for 28 days. Bioavailable fraction of heavy metals (Cd, Cu, Pb, and Zn) extracted with 0.1N HCl was monitored and also, mortality, growth, and metal concentration in earthworm were assessed. Result showed that all three amendments had high efficiency to reduce bioavailable fraction of heavy metals in soil. In particular, lime showed the highest reduction rate of Cu (63.9-87.7%), Pb (7.90-24.65%), and Zn (40.83-77.60%) among three amendments. No mortality of earthworm was observed during experimental period except 3% and 5% AMDS treatment indicating that application of chemical amendments is safe in terms of ecotoxicological aspect. However, no positive correlation was observed between reduction of bioavaialble fraction of heavy metals in soil and earthworms. Overall, application of chemical amendments in agricultural field can be adapted for reducing bioavailable fraction of heavy metals and detoxification in soil.

Fraction and Mobility of Heavy Metals in the Abandoned Closed Mine Near Okdong Stream Sediments (폐광산 지역 옥동천 퇴적물내에 포함된 중금속의 존재형태 및 이동성)

  • Kim Hee-Joung;Yang Jae-E;Lee Jai-Young;Jun Sang-Ho
    • Journal of Soil and Groundwater Environment
    • /
    • v.10 no.2
    • /
    • pp.44-51
    • /
    • 2005
  • Fractional composition and mobility of some heavy metals in sediments from Okdong stream are investigated. The fractional scheme for heavy metals in the sediment was established for five chemically defined heavy metal forms as adsorbed fraction, carbonate fraction, reducible fraction, organic fraction, and residual fraction. The most abundant fraction heavy metals in the sediments is reducible and secondly abundant is organic fraction. Adsorbed fraction is minor part of the total heavy metals. Mobilization of heavy metals in the sediments from Okdong stream occur $19.8{\sim}56.7%$ of total cadmium concentrate. The most abundant fraction of the sediment metal is organic fraction in Cu, Pb metals investigated. Labile fraction of sediment metals are $0.5{\sim}48.5%$ of total Zn, $2.6{\sim}48.1%$ of total Pb, and $0.2{\sim}36.9%$ of total Cu, respectively. Most of labile fraction consists of reducible fraction for Cd, Zn, adsorbed fraction for Pb, reducible fraction for Cu, adsorbed fraction for Ni. The Mobilization of Zn and Cu is most likely to occur when oxygen depletes and that of Pb and Ni occurs when physical impact, oxygen depletion and pH reduction.

Evaluation of Sequential Extraction Techniques for Selected Heavy Metal Speciation in Contaminated Soils

  • Lee, Jin-Ho;Doolittle, James J.;Oh, Byung-Taek
    • Korean Journal of Environmental Agriculture
    • /
    • v.25 no.3
    • /
    • pp.236-246
    • /
    • 2006
  • In this study, we give insight into questionable results that can be encountered in the conventional sequential extraction of heavy metals (Cd, Cu, and Zn) from soils. Objectives of this study were to determine the extraction variability of exchangeable (EXC)-metals as using six different EXC-extractants commonly accepted, and to investigate selectivity problems with carbonates bound (CAB)-metal fraction, a buffered acetate (1.0 M NaOAc; pH 5.0) extractable-metal fraction, leading to erratic results in especially non-calcareous soils. The contents of EXC-metals were markedly varied with the different extractability of various EXC-metal extractants used. The contents of EXC-Cd fraction were ranged from 2.0 to 74.3% of total Cd content in all of the metal spiked soils studied. The contents of EXC-Zn fraction extracted with the different EXC-extractants were varied with soil types, which were from 0.4 to 3.9% of total Zn in the calcareous soils, from 7.6 to 17.9% in the acidic soil, and from 13.6 to 56.8% in the peat soil. However, the contents of EXC-Cu fraction were relatively similar among the applications of different EXC-meal extractants, 0.2 to 2.1 % of total Cu, in all soils tested. Also, these varied amounts of EXC-metal fractions, especially Cd and Zn, seriously impacted the contents of subsequent metal fractions in the procedure. Furthermore, the CAB-Cd, -Cu, and -Zn fractions extracted by the buffered acetate solution were in critical problem. That is, the buffered acetate solution dissolved not only CAB-metals but also metals that bound or occupied to subsequent fractions, especially OXD-metal fraction, in both calcareous and non-calcareous soils. The erratic results of CAB-fraction also seriously impacted the amounts of subsequent metal fractions. Therefore, the conventional sequential extraction should be reconsidered theoretically and experimentally to quantify the target metal fractions or might be progressively discarded.

Contamination of Heavy Metals from Dongmyeong Au-Ag Mine Area (동명 금-은 광산 주변의 중금속 오염)

  • 이광춘;김세현;이승호;서용찬
    • Economic and Environmental Geology
    • /
    • v.36 no.1
    • /
    • pp.17-25
    • /
    • 2003
  • Researches were carried out to investigate the characteristics and concentration of heavy metal elements of stream water through Dongmyoung abandoned metal mine and soil adjacent to the mine. The pH range of water was 5.9∼7.1 that implies the water environment was acidic to neutral. The contents and distribution aspects of heavy metals in water samples varied with geochemical characteristics of element, but the concentration of heavy metals has the tendency of increase closer to the mine in general. The results of soil analysis show that total heavy metal concentration of agricultural soil near mine was far lower than those of ore tailing and dumping site. Therefore, the effects of the abandoned mine on stream water and agricultural products were supposed to be insignificant, particularly because the portion of absorbed carbonates and reducible fractions among total heavy metal concentration was relatively lower than the other. Since, however total heavy metal concentrations of mining site were relatively higher than those of adjacent region, there is a possibility of heavy metal difussion when the chemical environment of the site changes due to migration of surface and underground water. It is suggested that the preventive measures for water and soil pollution by the heavy metals would be considered around the region.

Existing Forms of Heavy Metals in the Vicinity of a Smelter (제련소 주변토양 중금속 존재형태)

  • Woo, Sang-Duck;Kim, Geon-Ha;Kim, Young-Jin;Nam, Kyoung-Phile
    • Journal of Soil and Groundwater Environment
    • /
    • v.15 no.5
    • /
    • pp.16-22
    • /
    • 2010
  • Heavy metals in soils exist in various forms dependent upon surrounding conditions. As the Janghang smelter area is of concern for its high elevated heavy metal concentrations, Korean government decided to remediate the area. Main objectives of this research were; to analyze heavy metal concentrations and their existing forms in the vicinity of the smelter; and to understand differences made by analysis techniques of heavy metals. Top soils of rice field, crop field, bare field, and forestry in the area were sampled and analyzed for their physicochemical characteristics. Concentrations of Cu, Cd, Pb, and As were analyzed with two pretreatment techniques adopted using 0.1 N HCl and aqua regia. To analyze existing forms of heavy metals, Tessier's schemes for sequential extraction technique were adopted. Exchangeable fraction and carbonate bound fraction of heavy metals may pose potential threat to environment and were in the order of Pb > As > Cu > Cd. If assessing mobile fraction of heavy metals by land uses, the order was forestry > bare land > crop field > rice field. When analyzed using Tessier's scheme, high ratio of residual fractions to total arsenic concentration should be considered for remediation design of the area.

Feasibility of Present Soil Remediation Technologies in KOREA for the Control of Contaminated Marine Sediment: Heavy Metals (우리나라 현존 토양정화 기술의 해양오염퇴적물 정화사업 적용 가능성 검토: 중금속)

  • Kim, Kyoung-Rean;Choi, Ki-Young;Kim, Suk-Hyun;Hong, Gi-Hoon
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.32 no.12
    • /
    • pp.1076-1086
    • /
    • 2010
  • Soil remediation technologies were experimented to evaluate whether the technologies could be used to apply remediation of contaminated marine sediment. In this research, marine sediments were sampled at "Ulsan" and "Jinhae" where remediation projects are considered, and then the possibility of heavy metal removal was evaluated throughout the technologies. Heavy metal concentration of silt and clay fraction was higher than that of sand fraction at "Ulsan". Heavy metal removal of the silt and clay fraction was arsenic (As) 81.5%, mercury (Hg) 93.8% by particle separation, cadmium (Cd) 72.2%, mercury (Hg) 93.8% by soil washing technology, cadmium (Cd) 70.8%, lead (Pb) 65.6% by another soil washing technology. Based on experimental results, tested particle separation and soil washing technologies could be used to remove heavy metals of sand fraction and silt and clay fraction. Heavy metal removal by soil washing technology which was composed of separation, washing and physical or chemical reaction by additives such as acid, organic solvents was more effective comparing to that of particle separation. Since heavy metal concentration of all treated samples was suitable for national soil standards, all the tested technologies were could be used not only to remove heavy metals of marine contaminated sediment but also to reuse treated samples in land.