• Title/Summary/Keyword: Heavy metal cations

Search Result 60, Processing Time 0.026 seconds

Characterization of Cation Exchange and Cesium Selectivity of Synthetic Beta-Dicalcium Silicate Hydrate

  • El-Korashy, S.A.
    • Journal of the Korean Chemical Society
    • /
    • v.46 no.6
    • /
    • pp.515-522
    • /
    • 2002
  • Solid beta-dicalcium silicate hydrate $(\beta-C_2SH)$ synthesized under hydrothermal conditions at $240^{\circ}C$ and Ca/Si=2 molar ratio shows cation exchange properties towards divalent metal cations such as Fe, Cu, Zn, Cd, or Pb. The ability of metal cation uptake by the solid was found to be in the order: $Fe^{2+}$$Cu^{2+}$$Zn^{2+}$$Cd^{2+}$ = $Pb^{2+}$. Cesium selectivity of the solid was demonstrated in the presence of univalent cation such as $Li^+$, $Na^+$ and $K^+$ and divalent cations such as $Ca^{2+}$, $Mg^{2+}$ and $Ba^{2+}$, which are one hundred times more concentrated than the $Cs^+$. The uptake of $Cs^+$ is maximum in the presence of $Mg^{2+}$ whereas it is minimum in the presence of $K^+$. The different affinities of ${\beta}-C_2SH$ towards divalent metal cations can be used for the separation of those ions. Due to its selectivity for cesium it can be used in partitioning of radioactive Cs+ from nuclear wastes containing numerous cations. The mechanism of the metal cation exchange and cesium selectivity reactions by the solid is studied.

Effects of the application of Sewage Sludge on the Growth of Chinese Cabbage(Brassica campestris L.) and Changes in Soil Chemical Properties. (불수 sludge 시용이 배추의 생육과 토양의 화학성 변화에 미치는 영향)

  • 김수영;조경철;정순주
    • Korean Journal of Organic Agriculture
    • /
    • v.9 no.1
    • /
    • pp.61-73
    • /
    • 2001
  • This study was conducted to investigate the effect of sewage sludge application on the growth of chinese cabbage and the changes of chemical properties of soil. The experiment were set up with two different place and cultivated from Feb. 10 to June. 20 of 2000. Treatments are 0, 1.25, 2.5, 5, 10 and 20kg/3.3$\m^2$ of sewage sludge applicated into the soil and recorded the growth characteristics. Chemical properties of soil were also analysed before and after treatment. The application of the sewage sludge resulted in increasing the content of EC, cations exchange capacity, available phosphate and organic matter. And increased the growth characteristics in terms of the number of leaves, leaf area, fresh and dry weight regardless of crops experiments. Optimum amount of the sewage sludge depended on chemical properties of soil used. This results demonstrated that application of sewage sludge in the soil attribute to have play an important both improving soil chemical properties and promoting the crop growth. As lowering the soil pH(pH 6) heavy metal content increased compared with higher pH(pH 7). Feasibility was recognized in the application of sewage sludge as a fertilizer for the growth of chinese cabbage. Detrimental effects such as heavy metal in the soil and crop followed by the application of sewage sludge was not observed.

  • PDF

Application of Ferrate(VI) to the Removal of Humic Acid and Heavy Metals (Cu, Mn, and Zn) (Humic Acid와 중금속(Cu, Mn, Zn)제거를 위한 Ferrate(VI)의 적용)

  • Lim, Mi-Hee;Kim, Myoung-Jin
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.31 no.6
    • /
    • pp.454-459
    • /
    • 2009
  • In this paper, we have performed an experimental study to simultaneously remove humic acid (RA) and heavy metals (Cu, Mn, and Zn) from the river water using potassium ferrate(VI), a multi-purpose and environment-friendly chemical. In the experiments for treating three 0.1 mM single heavy metals using 0.03${\sim}$0.7 mM (as Fe) ferrate, the removal efficiencies ranged 28${\sim}$99% for Cu, 22${\sim}$73% for Mn, and 18${\sim}$100% for Zn. In addition, humic acid and heavy metals could be very efficiently removed at the same time using 0.03${\sim}$0.7 mM (as Fe) ferrate: for example, 49${\sim}$81% (humic acid), 93${\sim}$100% (Cu), 22${\sim}$86% (Mn), and 20${\sim}$100% (Zn). The removal efficiencies of humic acid and heavy metals in the mixture of humic acid and heavy metals were higher than that in the solution of single humic acid or heavy metal. It can be explained by the fact that, before adding ferrate to the mixed solution, part of solutes were already removed by the complexation between the negatively-charged functional groups of humic acid and heavy metal cations.

A Study on the Horizontal and Vertical Distribution of Heavy Metal Elements in Slime Dump from Dukum Mines, Korea (덕음광산 선광광미와 주변토양의 중금속에 대한 수평.수직적인 분산에 관한 연구)

  • 박영석
    • Economic and Environmental Geology
    • /
    • v.33 no.2
    • /
    • pp.91-100
    • /
    • 2000
  • It has been more than ten years since Dukun mine was abandoned. Tailings of waste deposits and slime dumps in the abandoned Dukum mine have been left to be deserted for fifty years. The results of fifty years of neglecting are nothing short of major environmental problems. Slime dumps have been exposed to air and water in the mine over ten years and then soil profile has been formed well. Soil in the upper layer (A horizon) is the light gray color due to the leaching of cations. Soil in the lower layer (A2 horizon, 0.2∼0.3m)is tinted with reddish brown and yellowish brown color due to the development of iron oxides and iron hydroxides. Soil in the lower part of B horizon of (1.0∼3.0m) with the growth of copper and zinc oxides exposes to the bluish green, light blue, and dark gray. Ranging from 3m to 8m in depth, 85 samples were taken from 22 sampling sites with 50m intervals located on the slime dump area with hand auger and trench (open cut). As tailings was distributed, heavy metal elements extracted by the process of surface water and ground water move and disperse in to the hydrosphere. Waste dumps were distributed in and around the mine and water draining from those dumps be a potential source of contamination. Soils, thus, can be dispersed into downslope and downstream through wind and water by clastic movement. These materials may be deposited in another horizon if the water is withdrawn, or if the materials are precipitated as a result of differences in pH, or other conditions in deeper horizons. These were primarily associated with acid mine drainage. The characteristics and rate of release of acid mine drainage are influenced by various chemical and biological reactions at the source of acid generations. Prolonged extration of heavy metal elements has a detrimental effect on the agricultural land and residental area. Twenty soil samples were collected from the agricultural land in the area (0∼30 cm). Seventeen samples were also taken from the sediment in the stream running alongside the dumps. The dispersion patterns of heavy metal elements are as follows: The content of As ranged 2∼6 ppm in a horizon, 20∼125 ppm in B horizon with large amount of clay mineral is concentrated and the content of Cd ranged 1∼2 ppm in A horizon, 4∼22 ppm in B horizon. Like Cd, the content of As, Cu, Zn, Pb in B horizon is higher than that in A horizon (approximately 5∼100 times). When soil formation proceeds in stages, it is necessary to investicate the B horizon with the concentration of heavy metal and preventive measures will have to established.

  • PDF

APPLICATIONS OF SERICITE IN WASTEWATER TREATMENT : REMOVAL OF Cu(II) AND Pb(II) FROM AQUEOUS SOLUTIONS

  • Tiwari, Diwakar;Kim, Hyoung-Uk;Lee, Seung-Mok
    • Environmental Engineering Research
    • /
    • v.11 no.6
    • /
    • pp.303-310
    • /
    • 2006
  • The aim of this study is to assess the applicability of sericite in wastewater treatment particularly the removal of two important heavy metal toxic ions viz., Cu(II) and Pb(II) from aqueous solutions. The batch type experiments showed that sericite is found to be one of useful natural sorbent for the removal of these two cations from aqueous solutions and it is also to be observed that with the increase in sorptive concentration amount of metal uptake increases and the concentration dependence data obtained are fitted well for the Langmuir adsorption isotherm rather than Freundlich adsorption model. Further, the Langmuir monolayer adsorption capacity is found to be $1.674\;mg\;g^{-1}$ for Cu(II) and $4.697\;mg\;g^{-1}$ for Pb(II). Kinetic studies enabled, an apparent equilibria can be achieved between soild/solution interface within ca 10 mins for Cu(II) and ca 90 mins for Pb(II). Moreover, the removal behavior of sericite for these two metal ions is greatly influenced by solution pH.

Competitive Adsorption Characteristics of Cupper and Cadmium Using Biochar Derived from Phragmites communis (갈대 biochar의 구리 및 카드뮴 경쟁흡착특성)

  • Park, Jong-Hwan;Kim, Seong-Heon;Shin, Ji-Hyun;Kim, Hong Chul;Seo, Dong Cheol
    • Korean Journal of Environmental Agriculture
    • /
    • v.34 no.1
    • /
    • pp.21-29
    • /
    • 2015
  • BACKGROUND: Heavy metal adsorptionnot only depends on biochar characteristics but also on the nature of the metals involved and on their competitive behavior for biochar adsorption sites. The goal of this study was to investigate the competitive absorption characteristics of Cu and Cd in mono-metal and binary-metal forms by biochar derived from Phragmites communis. METHODS AND RESULTS: Batch and column experiments were conducted to evaluate the competitive adsorption characteristics of the biocharfor Cu and Cd. In the batch experiments, the maximum adsorption capacity of Cd(63 mg/g) by biochar was higher than that for Cu (55 mg/g) in the mono-metal adsorption isotherm. On the other hand, the maximum Cu adsorption capacity (40 mg/g) by biochar was higher than that for Cd(25 mg/g) in the binary-metal adsorption isotherm. Cu was the most retained cations. Cd could be easily exchanged and substituted by Cu. The amounts of adsorbed metals in the column experiments were in the order of Cd (121 mg/g) > Cu (96 mg/g) in mono-metal conditions, and Cu (72 mg/g) > Cd (29 mg/g) in binary-metal conditions. CONCLUSION: Overall, the results demonstrated that competitive adsorption among metals increased the mobility of these metals. Particularly, Cd in binary-metal conditions lost its adsorption capacity most significantly.

Effect of Combined Application of Bottom Ash and Compost on Heavy Metal Concentration and Enzyme Activities in Upland Soil (밭 토양에서 바닥재와 축분퇴비의 혼합시용이 토양의 중금속 함량 및 효소활성에 미치는 영향)

  • Kim, Yong Gyun;Lim, Woo Sup;Hong, Chang Oh;Kim, Pil Joo
    • Korean Journal of Environmental Agriculture
    • /
    • v.33 no.4
    • /
    • pp.262-270
    • /
    • 2014
  • BACKGROUND: Coal combustion bottom ash(BA) has high carbon and calcium content, and alkaline pH, which might improve nutrient cycling in soil related to microbial enzyme activities as it is used as soil amendment. However, it contains heavy metals such as copper(Cu), manganese (Mn), and zinc(Zn), which could cause heavy metals accumulation in soil. Compost might play a role that stabilize BA. The objective of this study was to evaluate effect of combined application of BA and compost as soil amendment on heavy metals concentration, enzyme activities, chemical properties, and crop yield in upland soil. METHODS AND RESULTS: BA was applied at the rate of 0, 20, 40, and 80 Mg/ha under different rate of compost application (0 and 30 Mg/ha) in radish (Raphanus sativus var) field. Combined application of BA and compost more improved chemical properties such as pH, EC, OM, total nitrogen, available phosphate, and exchangeable cations of soil than single application of BA. Water soluble Mn and Zn concentration in soil significantly decreased with increasing application rate of BA. Decrease in those metals concentration was accelerated with combined application of BA and compost. Urease and dehydrogenase activities significantly increased with increasing application rate of BA. Phosphotase activities were not affected with single application of BA but increased with combined application of BA and compost. Radish yield was not affected by application rate of BA. CONCLUSION: From the above results, combined application of BA and compost could be used as soil amendment to improve chemical properties and enzyme activities of soil without increase in heavy metal concentration and decrease in crop yield in upland soil.

Model Development for Estimating Total Arsenic Contents with Chemical Properties and Extractable Heavy Metal Contents in Paddy Soils (논토양의 이화학적 특성 및 침출성 중금속 함량을 이용한 비소의 전함량 예측)

  • Lee, Jeong-Mi;Go, Woo-Ri;Kunhikrishnan, Anitha;Yoo, Ji-Hyock;Kim, Ji-Young;Kim, Doo-Ho;Kim, Won-Il
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.45 no.6
    • /
    • pp.920-924
    • /
    • 2012
  • This study was performed to estimate total contents of arsenic (As) by stepwise multiple-regression analysis using chemical properties and extractable contents of metal in paddy soil adjacent to abandoned mines. The soil was collected from paddies near abandoned mines. Soil pH, electrical conductively (EC), organic mater (OM), available phosphorus ($P_2O_5$), and exchangeable cations (Ca, K, Mg, Na) were measured. Total contents of As and extractable contents of metals were analyzed by ICP-OES. From stepwise analysis, it was showed that the contents of extractable As, available phosphorus, extractable Cu, exchangeable K, exchangeable Na, and organic mater significantly influenced the total contents of As in soil (p<0.001). The multiple linear regression models have been established as Log (Total-As) = 0.741 + 0.716 Log (extractable-As) - 0.734 Log (avail-$P_2O_5$) + 0.334 Log (extractable-Cu) + 0.186 Log (exchangeable-K) - 0.593 Log (exchangeable-Na) + 0.558 Log (OM). The estimated value in total contents of As was significantly correlated with the measured value in soil ($R^2$=0.84196, p<0.0001). This predictive model for estimating total As contents in paddy soil will be properly applied to the numerous datasets which were surveyed with extractable heavy metal contents based on Soil Environmental Conservation Act before 2010.

Novel Naphthalene Based Lariat-Type Crown Ethers Using Direct Single Electron Transfer Photochemical Strategy

  • Park, Hea Jung;Sung, Nam Kyung;Kim, Su Rhan;Ahn, So Hyun;Yoon, Ung Chan;Cho, Dae Won;Mariano, Patrick S.
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.12
    • /
    • pp.3681-3689
    • /
    • 2013
  • This study explored a direct SET-photochemical strategy to construct a new family of thioene conjugated-naphthalamide fluorophore based lariat-crown ethers which show strong binding properties towards heavy metal ions. Irradiations of designed nitrogen branched (trimethylsilyl)methylthio-terminated polyethylenoxy-tethered naphthalimides in acidic methanol solutions have led to highly efficient photocyclization reactions to generate naphthalamide based lariat type thiadiazacrown ethers directly in chemo- and regio-selective manners which undergo very facile secondary dehydration reactions during separation processes to produce their corresponding amidoenethio ether cyclic products tethered with electron donating diethyleneoxy- and diethyenethio-side arm chains. Fluorescence and metal cation binding properties of the lariat type enamidothio products were examined. The photocyclized amidoenethio products, thioene conjugated naphthalamide fluorophore containing lariat-thiadiazacrowns exhibited strong fluorescence emissions in region of 330-450 nm along with intramolecular exciplex emissions in region of 450-560 nm with their maxima at 508 nm. Divalent cation $Hg^{2+}$ and $Pb^{2+}$ showed strong binding to sulfur atom(s) in side arm chain and atoms in enethiadiazacrown ether rings which led to significant enhancement of fluorescence from its chromophore singlet excited state and concomitant quenching of exciplex emission. The dual fluorescence emission responses towards divalent cations might provide a new guide for design and development of fluorescence sensors for detecting those metals.

Synthesis and Cations Binding Properties of a New C,N-bipyrazolic Ligand

  • Attayibat, Ahmed;Radi, Smaail;Ramdani, Abdelkrim;Lekchiri, Yahya;Hacht, Brahim;Bacquet, Maryse;Willai, Stephanie;Morcellet, Michel
    • Bulletin of the Korean Chemical Society
    • /
    • v.27 no.10
    • /
    • pp.1648-1650
    • /
    • 2006
  • The synthesis of a new C,N-bipyrazolic ligand with a functionalized donor-group is reported. The binding properties of the ligand and two other ligand of similar structures towards heavy metal ions ($Hg^{2+}$, $Cd^{2+}$, $Pb^{2+}$, $Zn^{2+}$, $Cu^{2+}$) and alkaline metal ions ($K^+$, $Na^{+}$, $Li^+$) were studied by a liquid-liquid extraction process and the extracted cation percentage was determined by atomic absorption measurements. The selectivity of the ligand to Hg(II) has been mentioned in the abstract.