• Title/Summary/Keyword: Heavy metal cation

Search Result 83, Processing Time 0.019 seconds

The removal of heavy metals by crab shell in aqueous solution (게 껍질을 이용한 수중의 중금속 제거)

  • An, Hee-Kyung;Park, Byung-Yoon;Kim, Dong-Seog
    • Journal of Environmental Science International
    • /
    • v.9 no.5
    • /
    • pp.409-414
    • /
    • 2000
  • In order to examine the availability and effectiveness of crab shell for the removal of heavy metals in aqueous solution the crab shell was compared with cation exchange resin(CER), zeolite granular activated carbon (GAC) and powdered activated carbon(PAC) on aspects of heavy metal removal capacity rate and efficiency. In the removal of Pb, Cd and Cr, the heavy metal removal capacity of crab shell was higher than those of any other sorbents (CER, zeolite, GAC, PAC) and the order of heavy metal removal capacity was crab shell>CER>zeolite>PAC GAC. However in the removal of Cu, the result of crab shell was slightly lower than that of CER. The initial heavy metal removal rate was affected by the sorts of sorbents and metals. In all heavy metals the heavy metal removal rate of crab shell was higher than those of any other sorbents. Under the heavy metal concentration of 1.0 mmole/$\ell$ the heavy metal removal efficiency of crab shell was maintained as 93~100% which was much higher than those of any other sorbents.

  • PDF

Properties of Heavy Metal Adsorption of Clay Minerals (점토광물에 의한 중금속 흡착 특성)

  • 엄태호;김유택;이기강;김영진;강승구;김정환
    • Journal of the Korean Ceramic Society
    • /
    • v.39 no.7
    • /
    • pp.663-668
    • /
    • 2002
  • Cation exchange capacity of clay, white clay and zeolite was estimated by performing the powder adsorption test for 6 different heavy metal (Cd, Cr, Cu, Fe, Pb and Zn) standard solutions whose concentrations were varied by 5,10,15 and 20 ppm. The adsorption rate of heavy metals decreased with increasing the concentration of standard heavy metal solutions. The adsorption rate of the clay and the white clay showed more than 80% for the all tested heavy metals except Cr and especially above 99% for the Fe and the Pb. The Cr adsorption rate of the mixture of the clay and the white clay increased, however, that of Zn decreased. The adsorption rate of Cr and Zn showed relatively lower values as compared with those of the other heavy metals because the cation exchange H$\^$+/ ions and heavy metal ions of the clay or the white clay were in competition at low pH region.

Development and Application of Cation-exchange Membranes Including Chelating Resin for Efficient Heavy-metal Ion Removal (효율적인 중금속 이온 제거를 위한 킬레이팅 수지를 포함한 양이온 교환막의 개발 및 응용)

  • Kim, Do-Hyeong;Choi, Young-Eun;Park, Jin-Soo;Kang, Moon-Sung
    • Membrane Journal
    • /
    • v.27 no.2
    • /
    • pp.129-137
    • /
    • 2017
  • In this study, we have developed cation-exchange membranes (CEMs) which can efficiently separate heavy-metal ions among the cations contained in a water system. Sulfonated polyetheretherketone (SPEEK) was used as a base polymer and a powdered chelating resin with strong binding ability to heavy-metal ions was added into it. In order to optimize the performance of the CEM, the content of chelating resin powder and the ion exchange capacity of SPEEK have been controlled. As a result, it was confirmed that the removal efficiency of heavy metal ion was improved by more than 20% by applying the CEM to membrane capacitive deionization (MCDI).

Application of Zeolite with Different Cation Exchange Capacity for the Stabilization of Heavy Metals in Upland Soil (양이온교환용량이 다른 제올라이트 처리에 따른 밭토양 내 중금속 안정화 평가)

  • Gu, Bon-Wun;Kim, Mun-Ju;Park, Seong-Jik
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.59 no.5
    • /
    • pp.41-49
    • /
    • 2017
  • This study was aimed to investigate the influence of cation exchange capacity (CEC) and application amounts of zeolite on the stabilization of heavy metals (As, Ni, Pb, and Zn) in upland soils. The upland soils were sampled from field near mines located in Gyeonggi Province. The CEC of zeolite was treated at three different levels, ie, low, medium, and high, while zeolite was amended with soils at the ratio of 0.1 % and 0.5 % as to soil weight. A sequential extraction was performed for the soil sampled at 1, 2 4, and 8 week after zeolite was added to the soil. The concentrations of Pb and Zn appeared to be high in the sampled soils. The mobility of heavy metals obtained from sequential experiments was as follows: Pb > Zn > Ni >As. Addition of zeolite to contaminated soils effectively reduced exchangeable and carbonate fractions but increased organic and residual fraction, indicating that zeolite is effective for immobilizing heavy metals in soils. The influence of incubation time on the metal stabilization was rather pronounced as compared to the application amount and CEC of zeolite.

Removal of Heavy Metal Ions in Wastewater Using Zeolite Minerals (제올라이트광물을 이용한 폐수중의 중금속제거)

  • Yim Chai Suk;Yim Going
    • Korean Journal of Materials Research
    • /
    • v.14 no.3
    • /
    • pp.229-234
    • /
    • 2004
  • All the applications of natural zeolites make use of one or more of their physical and chemical properties: adsorption, ion-exchange and related molecular sieve properties, dehydration and rehydration, and siliceous composition. Accordingly, the applications of zeolite have been carried out in the various aspects because of its large cation exchange capacity and adsorption properties. In this paper, the adsorption effect of heavy metal ions in wastewater on zeolite mineral by batch adsorption process is studied. The amounts of adsorbed ions were variable by original pH and ionic concentration, especially original pH of solution had an important effect on the adsorption. In case of low pH solution, e.g. below 3.0, clinoptilolite adsorbed $Pb^{2+}$ ,$ Cd ^{2+ }$ , $Cu^{2+}$ and $Zn^{ 2+}$ , but mordenite almost did not adsorb except $Pb^{2+}$ . Under the same conditions, these ions were more adsorbed on clinoptilolite than on mordenite mineral. The velocity of adsorption was relatively fast and it was confirmed by shaking test that the equilibrium of adsorption could be attained in about one hour. The species of exchangeable cation of zeolite had an effect on its removing ability and zeolite of the sodium-exchanged type was the best.

Adsorption Property of Heavy Metal ion, $Cd^{2+}$-$Cl^{3+}$-$Pb^{2+}$+ in HCI Solution (HCl 용액에서의 중금속 이온, $Cd^{2+}$-$Cl^{3+}$-$Pb^{2+}$의 흡착 특성)

  • 박원우;이봉헌
    • Journal of Environmental Science International
    • /
    • v.5 no.6
    • /
    • pp.779-783
    • /
    • 1996
  • Cation exchange distribution coefficients of poly(dithiocarbamate) were presented for $Cd^{2+}$, $Cr^{3+}$, and $Pb^{2+}$ in HCI. The distribution coefficients were determined tv using the batch method. Based on these distribution data, the separation possibilities of the heavy metal ions were discussed. The distribution coefficients of three heavy metal ions on dithiocarbamate resin were decreased as HCI concentrations were increased. The selective separation of $Cr^{3+}$ and $Cd^{2+}$ was possible by using 0.1M HCl in dithiocarbamate resin and the reproducibility test showed that the average absorptivity of resin was 90% in the case of $Cd^{2+}$ ion by the column method.

  • PDF

A Study on the Removal of Heavy Metal with Mg-Modified Zeolite

  • Wang, Jei-Pil;Kim, Gyu-Cheol;Go, Min-Seok
    • Journal of Powder Materials
    • /
    • v.27 no.4
    • /
    • pp.287-292
    • /
    • 2020
  • The subject of this study is a zeolite generated as a by-product of recycling LAS (lithium-aluminum-silicate) resources, a kind of glass and ceramic produced by induction. The zeolite by-product is modified into Mg-zeolite using Mg as a cation to absorb Pb, a heavy metal generated from water pollution caused by recent industrial wastewater. An ion-exchange method is used to carry out the modification process, from zeolite byproduct to Mg-zeolite, and simultaneously absorb the Pb in the heavy-metal solution (99.032 mg/L). It is found that the sodium zeolite in the raw material residue can be modified to magnesium zeolite by reacting it with a mixture solution at 1 M concentration for 24 h. As a result, it is found that the residual Pb (0.130 mg/L) in the heavy metal solution is shown to be absorbed by 99.86%, with successful formation of a Mg-modified zeolite.

Determining Soil Quality of Heavy Metal Contaminated Agricultural Field in Korea (중금속 오염 농경지 토양의 토양질 평가에 관한 연구)

  • Kim, Ju Hee;Chung, Doug Young;Oh, Se Jin;Kim, Rog Young;Yang, Jae E.;Park, Gwan In;Lee, Jin Soo;Kim, Sung Chul
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.45 no.6
    • /
    • pp.1237-1241
    • /
    • 2012
  • Heavy metal pollution in agricultural field has been a critical issue in worldwide. For this reason, remediation technologies for heavy metal polluted soil are applied especially near at the abandoned metal mine. Soil quality analysis is also an important factor for proper management in heavy metal polluted agricultural field. In this study, scoring function was utilized to evaluate soil quality in heavy metal polluted agricultural field. Among other soil properties, bulk density, soil pH, EC, $NH_4$-N, $NO_3$-N, and cation exchange capacity (CEC) were determined for minimum data set (MDS) with principal component analysis. Result showed that both upland and paddy soil contaminated with heavy metal were not suitable for crop growth except scoring of soil pH for paddy soil and CEC for upland soil. This result might indicate that chemical stabilization technology with chemical amendment could be adapted for remediation method for heavy metal polluted agiclutural field not only for heavy metal immobilization but also enhancement of soil condition for crop growth.

The Patterns of Inorganic Cations, Nitrogen and Phosphorus of Plants in Moojechi Moor on Mt. Jeongjok. (정족산 무제치늪 식물의 무기이온, 질소 및 인의 양상)

  • 배정진;추연식;송승달
    • The Korean Journal of Ecology
    • /
    • v.26 no.3
    • /
    • pp.109-114
    • /
    • 2003
  • To investigate ecophysiological characteristics of plants species adapted to moor habitat, we selected 22 species plants and analyzed inorganic cations (K, Ca, Mg), heavy metals (Al, Fe, Mn) and total nitrogen and phosphorus quantitatively. Moojechi moor indicated typical acidic and oligotrophic conditions with pH of 5.0∼5.6 (pH 4.3∼5.1 in soil) and EC of 15∼30μ S/cm, and contained very low contents of soil divalent cation such as Ca and Mg but high contents of heavy metals (esp. Al). With respect to inorganic cation contents, investigated plants species showed remarkable interspecific difference. Plant species belonging to J. effusus var. decipiens, M. japonica, I. globosa, M. sacchariflorus, R. mucronulatum, R. yedoense var. poukhanense, H. micrantha, D. rotundifolia showed very low contents of inorganic cation below 400 μ M/g DW, but plant species of C. palustris var. spontanea, L. sessilifolia, P. mandarinorum, C. lineare, S. austriaca sub. glabra, V. mandshurica, A. decursiva showed high cation contents in leaves. Especially, S. austriaca sub. glabra (Compositae) and V. mandshurica (Violaceae) showed pattern accumulating Ca and Mg with plant growth, but I. ensata var. spontanea (Iridaceae) and S. officinalis (Rosaceae) showed decreasing tendency. Meanwhile, most plant species showed low contents of soluble metal ions in leaves in spite of high heavy metal contents on soil, and indicated remarkable interspecific differences in the total contents and composition of heavy metals accumulated. Despite low contents of N and P on soil, most plant species indicated relatively high contents of N and P in leaves at the early stage of growth, and showed slowly decreasing pattern according to growth. Consequently, it seems that plant species inhabited on Moojechi moor cope with acidic-oligotrophic conditions, accumulating inorganic cations and nitrogen at the early growing stage and reutilizing them in the course of growth, and developing heavy metal excluding mechanism.

Stabilization Behavior of Heavy Metal ions by Treatment Conditions (처리조건에 따른 중금속 이온의 안정화 거동)

  • 엄태호;김유택
    • Journal of the Korean Ceramic Society
    • /
    • v.40 no.6
    • /
    • pp.583-588
    • /
    • 2003
  • Cation exchange capacity of clay, white clay and zeolite was measured by the adsorption test for 3 different heavy metal (Cd, Cr, Zn) standard solutions whose concentrations were varied by 10, 20, 30 ppm and pH were varied by 3, 5, 7, 9, respectively. The adsorption rate of Cd and Zn increased with increasing pH and slowly increased with increasing pH above pH 5. However, adsorption rate of Cr did not increase with increasing pH. Especially, Cr adsorption rate of the mixture of clay and white clay at pH 5 showed an half decrease compared to that at pH 3. The adsorption rate of mixed heavy metal solutions was in the order of Cd, Zn > Cr; however, the order was changed by Fe>Pb, Cu>Cr>Zn>Cd in case of Cu, Fe and Pb addition.