• Title/Summary/Keyword: Heavy metal

Search Result 3,482, Processing Time 0.031 seconds

A Study on Optimum Mixing Ratio of Paper Wastes as Bulking Agent in Cornposting of Swine Feces (돈분의 퇴비화에 있어서 종이류 폐기물의 적정 배합량에 관한 연구)

  • 정문식;박석환;최경호;손현석;김성균;박지영
    • Journal of Environmental Health Sciences
    • /
    • v.22 no.4
    • /
    • pp.82-90
    • /
    • 1996
  • This study was performed to find the optimum mixing ratio of paper waste in composting of mixture of swine feces and newspaper. Using the experimental setting of aeration rate which was found in the experiment carried out priorly, and moisture contents reported in other literature, just the initial C:N ratios were differentiated by mixing different amount of newspaper with the same amount of swine feces. This study was carried out by operating 4 experimental cornposting reactors of bench scale for 3 weeks. The followings are the conclusions that were derived from this study. 1. During composting reaction, the C:N ratio of each cornposter was decreased. Degree of decrease was in order of run 3, run 2, run 4, and run 1 of which initial C:N ratio was 30, 25, 35, and 20 respectively. All of the final composts were found to be completed composting reaction. 2. Ash contents of each reactor increased rapidly in order of run 3, run 2, run 4, and run 1. The absolute values of quadratic effect coefficients of each second order regression function was 0.059, 0.038, 0.032, and 0.030 respectively. Ash contents evolution trend had a linear correlation with the C:N ratio trend. (r=-0.96932, p<0.05) 3. The range of highest temperatures reached during composting was 47.2-53.5$\circ$C. Those were not significantly different from one another. Thermophilic temperatures were maintained in the range of 48-108 hours. 4. Contents of heavy metal detected in the final compost were lower than those of Korean and European standards. 5. Concentration range of Nitrogen in the final compost was 1.11-2.27%, and that of phosphorus was 8.40-10.70 mg/kg. 6. The optimum C:N ratio which has been proposed without the consideration of types of bulking agents should be re-examined. Biodegradabilities of each bulking agents was thought to be important factor when determining the optimum initial C:N ratio for cornposting.

  • PDF

Molecular/biochemical Biomarkers for Exposure to Hazardous Chemicals in the Water Environment and their Application to Freshwater Fish (유해물질 노출로 인한 분자.생화학적 바이오마커와 담수 어류에 대한 현장 적용성)

  • Kim, Jung-Kon;Park, Ye-Na;Kim, Woo-Keun;Kim, Ji-Won;Lee, Sung-Kyu;Choi, Kyung-Ho
    • Journal of Environmental Health Sciences
    • /
    • v.36 no.5
    • /
    • pp.418-434
    • /
    • 2010
  • As concerns regarding water pollution grow, the need increases for a fast and accurate assessment of ecological risk. In this context, many studies have been conducted to identify biomarkers which can sensitively indicate exposure to and effects of various contaminants in a water environment. However, the utility of most such biomarkers in the real water environment is not yet validated. In this paper, we conducted a thorough review of publications that were related to developing or evaluating molecular and biochemical biomarkers of freshwater fish in ecological risk assessment, and evaluated whether these biomarkers of interest could link to the effects on higher biological levels, such as histopathology and above. Biomarkers of interest included those associated with metabolism, oxidative stress, reproduction and endocrine disruption, genotoxicity, and defense against heavy metal exposure. We found that, when used alone, most molecular and biochemical biomarkers are not sufficient to understand the effects of toxic substances in higher biological levels, due to defense or acclimation mechanisms of organisms. Moreover, some biomarkers respond not only to hazardous substances but also to the changes in water quality and disease outbreak. Molecular and biochemical biomarkers may be most useful in understanding the potential biological effects of toxic compounds when used in parallel with relevant endpoints of higher biological levels.

The influence of anthropogenic disturbances and watershed morphological characteristics on Hg dynamics in Northern Quebec large boreal lakes

  • Moingt, M.;Lucotte, M.;Paquet, S.;Beaulne, J.S.
    • Advances in environmental research
    • /
    • v.2 no.2
    • /
    • pp.81-98
    • /
    • 2013
  • Mercury (Hg) dynamics in the boreal environment have been a subject of concern in recent decades, due to the exposure of local populations to the contaminant. Land use, because of its impact on mercury inputs, has been highlighted as a key player in the sources and eventual concentrations of the heavy metal. In order to evaluate the impact of watershed disturbances on Hg dynamics in frequently fished, large boreal lakes, we studied sediment cores retrieved at the focal point of eight large lakes of Qu$\acute{e}$bec (Canada), six with watersheds affected by land uses such as logging and/or mining, and two with pristine watersheds, considered as reference lakes. Using a Geographical Information System (GIS), we correlated the recent evolution of land uses (e.g., logging and mining activities) and morphological characteristics of the watershed (e.g., mean slope of the drainage area, vegetation cover) to total Hg concentrations (THg) in sedimentary records. In each core, THg gradually increased over recent years with maximum values between 70 and 370 ng/g, the lowest mercury concentrations corresponding to the pristine lake cores. The Hg Anthropogenic Sedimentary Enrichment Factor (ASEF) values range from 2 to 15. Surprisingly, we noticed that the presence of intense land uses in the watershed does not necessarily correspond to noticeable increases of THg in lake sediments, beyond the normal increment that can be attributed to Hg atmospheric deposition since the beginning of the industrial era. Rather, the terrestrial Hg inputs of boreal lakes appear to be influenced by watershed characteristics such as mean slopes and vegetation cover.

Traceability Systems for Good Agricultural Products (우수농산물을 위한 생산이력 시스템)

  • Yu, Seong-Jae;Kim, Ki-Tae;Min, Byung-Hun;Jung, Hoe-Kyung
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • v.9 no.1
    • /
    • pp.179-182
    • /
    • 2005
  • Recently gene fabrication foodstuffs, remained chemicals and heavy metal on the agricultural product gets prominent, consciousness of consumers is getting higher regarding safety and quality problems of consumer products. A measurement should be done immediately because the research concerned about this has not been made compared to the foreign countries such as Europe, United States, Japan and so on has quickly accepted production record system. In this paper, we designed all the procedures among the production, postharvest, packing, storing should be done without any kinds of harm that could be happened from the farm to the dinner tables of each family as possible as we can. And also we defined the data system in accordance with the domestic agricultural system and realized the production trace system on the base of Good Agriculture Practices(GAPs) in order to let the consumers confirm the procedures themselves.

  • PDF

Eco-physiological Responses of Roadside Tree Species to Contamination of Soil with Lead (토양 납 오염에 대한 가로수 식물종의 생리생태적 반응)

  • Kim, Han Eol;Song, Uhram
    • Ecology and Resilient Infrastructure
    • /
    • v.2 no.3
    • /
    • pp.237-246
    • /
    • 2015
  • Heavy metal pollution in soil, such as lead contamination, has become an area of interest in Korea because of urbanization and atmospheric deposition from neighboring countries. Therefore, in this research, eco-physiological responses such as chlorophyll contents, antioxidant enzyme activity, photosynthetic rate, biomass and phytoaccumulation abilities were investigated for 4 commonly used native roadside tree species to suggest suitable tree species to cope with lead contamination. The target species, Ginkgo biloba, Prunus yedoensis, Zelkova serrata and Chionanthus retusus showed lead toxicity by significant changes of chlorophyll contents and antioxidant enzyme activities on treatments over 200 mg Pb/kg. However, biomass and photosynthetic rates only showed significant responses of plants in the highest level (5,000 mg/kg) treatment. Especially, G. biloba did not show any significant changes of antioxidant enzyme activity, photosynthetic rate, and biomass even in the highest level treatment. In low level - environmentally realistic treatments, G. biloba and P. yedoensis showed the highest phytoaccumulation rate of lead from soil. Selecting and planting species like G. biloba which have good phytoaccumulation abilities and resistance to lead contamination by further research will be required to deal with emerging lead contamination.

Preparation of Adsorbent from Sewage Sludge by Steam Activation and Adsorption Characteristic (하수슬러지의 수증기 활성화법을 이용한 흡착제 제조와 흡착특성)

  • Jung, Dong-Hyun;Chun, Young-Nam
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.29 no.5
    • /
    • pp.515-520
    • /
    • 2007
  • Recently, the treat of sludge is usually progressed by ocean disposal. But it will be totally banned by content of its heavy metal according to London Dumping Convention, gradually. The stable way of treat of sewage sludge should be examined urgently. To solve the problem, recently, there are efficient and environment-oriented method. One of them is to produce absorbent through the activation. This study produces absorbent through steam activation. As basic experiment, optimum activation condition for preparation of good absorbent is researched through study of the fellowing variables : steam flow rate, activated temperature, activation time. As the result of this with standard on iodine adsorptivity, it is chosen, that steam flow rate "30 mL/hr", activation temperature $"500^{\circ}C"$, activation time "60 minutes". At the time, iodine adsorptivity and yield shown that 228.4 mg/g, 77.23%. And also, by using nitrogen adsorption, SEM and EDS are confirmed that pore development, specific surface area, mean pore size, chemical component and content. Pore developed by steam activation is also confirmed that it is micropore.

Development of Controlling and Analyzing Software for Portable Atomic Emission Spectrometry (휴대용 원자 방출 분광계를 위한 제어 및 분석용 소프트웨어 개발)

  • Lee, Sang Chun;Lee, Chang-Soo;Jung, Min-Soo;Ryu, Dong-Hang
    • Analytical Science and Technology
    • /
    • v.11 no.1
    • /
    • pp.1-7
    • /
    • 1998
  • This study focuses on developing a controlling and analyzing software for the portable atomic emission spectrometer equipped with an electrothermal vaporizer(ETV) that can perform the in-situ trace analysis of heavy metal ions dissolved in water. The software works well for a notebook PC and it is exclusively developed for the real time analysis with a line filter and a photomultiplier light detector. The program is designed to operate under Windows 95 environment and either Korean or English can be used as a main language. The Delphi 2.0 language software is mainly used for programing. The program is designed to make a calibration curve and the system users can get the analytical data in a short time. And a final report can be generated without having difficulties. This software can be easily modified for other analytical atomic spectrometers.

  • PDF

Characteristics of Soil Nutrients by the Application of Rice Straw Ash (볏짚 회분의 토양적용에 따른 양분 특성 변화)

  • Kang, Ku;Hong, Seong-Gu
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.60 no.5
    • /
    • pp.105-113
    • /
    • 2018
  • In this study physical and chemical characteristics of rice straw ash (RSA) were analyzed in agricultural by-products such as the characteristics of soil pH, electric conductivity (EC), total phosphorus (T-P), available phosphate (Avail-P), and cation exchange capacity (CEC). The results showed that RSA is of mainly C in 95.74% and followed by Si > Al > P > Mg > K > Ca. The pH of RSA was high near 11 and the T-P concentration was $2,322.38{\pm}10.35mg/kg$. The specific surface area of RSA was $123.50m^2/g$, which was much lower than that of biochar. The X-ray diffraction (XRD) analysis indicated that RSA were C and Si based crystalline. TCLP and KSLT test results implied that the heavy metal concentrations were below the environmental standards and would not impose the risks. T-P concentration increased from $225.59{\pm}12.69mg/kg$ to $593.39{\pm}17.36mg/kg$ along with RSA mixing ratio to soil from 0% to 15%. Both pH and EC values were increased with the increase of RSA ratio. The changes in Avail-P and CEC were not when RSA mixing ratio was 1%. whereas the Avail-P concentration was slightly increase when the mixing ratio was more than 5%. Additional investigation considering receiving soil characteristics based on the results of this study would help effective application of RSA to soil.

A study on the Mechanical Properties of Concrete using Electronic Waste as Fine Aggregate (전자폐기물을 잔골재로 적용한 콘크리트의 역학적 특성에 관한 연구)

  • Kim, Yong-Moo;Choi, So-Yeong;Kim, Il-Sun;Yang, Eun-Ik
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.22 no.2
    • /
    • pp.90-97
    • /
    • 2018
  • The quantities of electronic waste have been increased rapidly, and was caused variety problems such as environmental pollution or dissipation of resource. So, it needed to development of recycling technology about heavy metal in the electronic waste. Meanwhile, filler material (concrete or mortar) was used for shielding radioactive waste, however, it did not used materials that it is proved radiation shielding performance. So, there is a lack of confidence in the shielding performance. Therefore, in this paper, mechanical properties of concrete was evaluated for the applicability using electronic waste as fine aggregate of filler material. From the test results, compressive and flexural strength and elasticity modulus and the micro pore in the $1{\mu}m$ range was significantly affected by substitution of electronic waste, however, it could be improved the performance by using mineral admixture as binder. So, it is shown that the electronic waste could be applicable as fine aggregate of filler material.

Nickel Ion Adsorption Behavior of Ceriporia lacerata Isolated from Mine Tailings in Korea

  • Kim, HaeWon;Lim, Jeong-Muk;Oh, Sae-Gang;Kamala-Kannan, Seralathan;Cho, Min;Oh, Byung-Taek
    • Journal of Soil and Groundwater Environment
    • /
    • v.20 no.2
    • /
    • pp.22-31
    • /
    • 2015
  • In the present study, surface of laccase producing Ceriporia lacerata was modified using 4-bromobutyryl chloride and polyethylenimine. The modified biomass was freeze dried and utilized as a biosorbent for the removal of Ni(II) from aqueous solution. The physicochemical properties of the biosorbent were analyzed using scanning electron microscopy and Fourier transform infrared spectroscopy. Batch experiments were carried out as a function of contact time (0-60 min), pH (2 to 8), adsorbent dosage (25-150 mg), and initial Ni(II) concentration (25-125 mg/L). The results indicate that surface modified biosorbent effectively adsorbed (9.5 mg/0.1 g biomass) Ni(II) present in the solution. The equilibrium adsorption data were modeled with different kinetic and isotherm models. The Ni(II) adsorption followed pseudo-first-order kinetics (R2 = 0.998) and Langmuir isotherm (R2 = 0.994) model. Hydroxyl and carbonyl functional groups present in biomass play a major role in the adsorption of Ni(II). The adsorbed Ni(II) from the biosorbent was successfully desorbed (85%) by 1M HCl. The results of the study indicate that the surface modified C. lacerate biomass could be used for the treatment of Ni(II) contaminated ground waters.