• 제목/요약/키워드: Heavy lift vessel

검색결과 6건 처리시간 0.021초

반잠수식 해양 구조물 상부 모듈의 해상 결합 작업시 동하중 평가 (Evaluation of Mating Dynamic Forces of Semi-submersible Offshore Structure Topside Module)

  • 이진호;정현수;김병우
    • 한국해양공학회지
    • /
    • 제27권1호
    • /
    • pp.9-15
    • /
    • 2013
  • This paper calculates the mating dynamic forces of a semi-submersible offshore structure's topside module, where a hull moored in the sea is combined with a topside module carried by a heavy lift vessel, as a mating installation method. The environmental conditions include various wave directions and wave heights, with constant wind and current speeds. Appropriate ballast and de-ballast plans for the heavy lift vessel and hull of the semi-rig should be performed in order to safely obtain these forces, whereas a fixed platform or the GBS (Gravity based structure) type of offshore structure only needs a ballast plan for the heavy lift vessel. From this paper, the allowable wave height or wave direction for the mating procedure can be investigated based on the standard DAF (Dynamic amplitude factor) of the rules and regulations.

초대형 해상 크레인의 선체구조 강도평가 (The Hull Strength Assessment for Heavy Lift Floating Crane)

  • 강용구;백승훈;이준혁;박우진;심대성;안용택;조병삼
    • 대한조선학회 특별논문집
    • /
    • 대한조선학회 2015년도 특별논문집
    • /
    • pp.1-8
    • /
    • 2015
  • In general, the strength assessment for heavy lift vessel is carried out under two stages. The first stage is to comply with the requirement of KR (Korean Register of Shipping) Steel Barges and Rules for Classification of Steel Ships. At the second stage, the structural strength analysis by Finite Element Method is peformed. This paper describes the strength assessment considering various loads for the heavy lift vessel of sheerleg type.

  • PDF

Innovative Methodology for Assembling Jack up Leg of 205m on ground of Ultra

  • 양영태;심송섭;이승엽;황외주;신봉영
    • 한국해양공학회:학술대회논문집
    • /
    • 한국해양공학회 2003년도 추계학술대회 논문집
    • /
    • pp.87-92
    • /
    • 2003
  • Generally, in jack up rig design for harsh environment, its leg height is a major factor for achieving a sufficient serviceability & operability in terms of the worst environment and the workable depth. Due to difficulties in constructing such a high-slender leg, inaccessibility of yard fabrication equipment, etc. the construction of Jack up rig fur harsh deep sea has not been common. Method using heavy crawler crane, fabrication tower or extension by the floating crane vessel is still conventional construction but, considering high cost fur mobilizing heavy lift vessel (HLV) or additional marine work for implementing preload / full height test at sea, the ground-base construction is much advantageous. Air skidding method (ASM hereafter) is ground-based construction methodology, newly developed due to such requests. ASM could also be extended to similar engineering fields. This paper presents the operating sequence, design parameters and procedure which were verified through successful operation at the end of May 2002.

  • PDF

Feasibility study for wrap-buoy assisted wet-tow and stepwise installation of mono-bucket foundation for 15 MW offshore wind turbine

  • Ikjae, Lee;Moohyun, Kim
    • Ocean Systems Engineering
    • /
    • 제12권4호
    • /
    • pp.413-437
    • /
    • 2022
  • An innovative concept for wet-transportation and stepwise installation of mono-bucket foundation for 15 MW offshore wind turbine is proposed. Case studies for two different mono-bucket and wrap-buoy dimensions are conducted and their hydrostatic and hydrodynamic performances are compared for both wet-towing and lowering operations. The intact stability and transient responses are analyzed in detail for various stages of lowering operation. Wave-induced motion statistics during wet tow in sea state 4 (highest operational window) are checked. The proposed concept is found to be feasible and can be an alternative cost-effective solution without using heavy-lift crane vessel in practice.

A Study on the Entry of Korean Shipping & Logistics Company into the Offshore Plant Logistics Service Market

  • Shin, Seok-Hyun;Kwon, Moon-Kyu;Park, Jin-Hee;Park, Young-Kyu
    • 한국항해항만학회지
    • /
    • 제39권2호
    • /
    • pp.125-130
    • /
    • 2015
  • Korea is worldwide top manufacturer of offshore plant industry, while shown weakness in high-valued offshore plant service industry (OPSI). The governmental support policies and studies for fostering programs are centered on shipbuilding and engineering sector. On the other hand, offshore logistics service sector among the programs is neither included as governmental fostering support sectors nor ever-studied. Domestic shipping and logistics companies have many experience of handling various project, heavy-lift cargo and even super blocks on shipbuilding industry. However they are faced with lack of appropriate heavy carrier and others. So for their successful entering into offshore plant logistics market, systematic preparation, studies and supporting policies are highly recommended.

A correlation method for high-frequency response of a cargo during dry transport in high seas

  • Vinayan, Vimal;Zou, Jun
    • Ocean Systems Engineering
    • /
    • 제6권2호
    • /
    • pp.143-159
    • /
    • 2016
  • Cargo, such as a Tension Leg Platform (TLP), Semi-submersible platform (Semi), Spar or a circular Floating Production Storage and Offloading (FPSO), are frequently dry-transported on a Heavy Lift Vessel (HLV) from the point of construction to the point of installation. The voyage can span months and the overhanging portions of the hull can be subject to frequent wave slamming events in rough weather. Tie-downs or sea-fastening are usually provided to ensure the safety of the cargo during the voyage and to keep the extreme responses of the cargo, primarily for the installed equipment and facilities, within the design limits. The proper design of the tie-down is dependent on the accurate prediction of the wave slamming loads the cargo will experience during the voyage. This is a difficult task and model testing is a widely accepted and adopted method to obtain reliable sea-fastening loads and extreme accelerations. However, it is crucial to realize the difference in the inherent stiffness of the instrument that is used to measure the tri-axial sea fastening loads and the prototype design of the tie-downs. It is practically not possible to scale the tri-axial load measuring instrument stiffness to reflect the real tie-down stiffness during tests. A correlation method is required to systematically and consistently account for the stiffness differences and correct the measured results. Direct application of the measured load tends to be conservative and lead to over-design that can reflect on the overall cost and schedule of the project. The objective here is to employ the established correlation method to provide proper high-frequency responses to topsides and hull design teams. In addition, guidance for optimizing tie-down design to avoid damage to the installed equipment, facilities and structural members can be provided.