• Title/Summary/Keyword: Heavy cu

Search Result 1,650, Processing Time 0.029 seconds

Geochemical Characteristics of Stream Sediments and Waters around the Pungam Landfill in Gwangju City, Korea (광주광역시 풍암매립지 주변 하상퇴적물과 물의 지구화학적 특성)

  • Park, Cheon-Young;Shim, In-Hyun;Bae, Jong-Phill;Ahn, Kun-Sang
    • Journal of the Korean earth science society
    • /
    • v.24 no.4
    • /
    • pp.290-302
    • /
    • 2003
  • This study was carried out to evaluate geochemical properties for stream sediments, surrounding soils, sludge collected in the drainage pipe of leachate and waters (stream water, groundwater, leachate) around the Pungam Landfill in Gwangju city. The stream sediments don't show any systematic trend of contents from upstream to downstream. The most enriched major element in the stream sediments is Fe (up to 7.08wt.% in GJ-23). Though stream sediment GJ-23 and GJ-34 were enriched by some heavy metals (eg. As, Cu, Zn), they do not constitute serious problems for environment consideration. The concentration of Fe (35.lwt.%) and As (38ppm) are significantly high in the GJ-8, which is soil specimen adjacent to leachate reservoir. The sludge (GJ-7) shows very high concentrations of As, Mn, Cr, Pb. In particular, the Cr content is 45.6 ppm, which exceeds the permitted level. The leachate is characterized by high TDS (2210-2470mg/L) and high electric conductivity (468, 530ms/cm), and enriched in both cation (Na, K) and anion (HCO$_3$). The leachate(PK-3) had a relatively high concentration of Cl, and is plotted in Na-Cl type on the Piper's diagram. The NO$_3$-N of the groundwater and stream water exceeded the permitted levels for drinking water.

Assessing Water Quality of Siheung Stream in Shihwa Industrial Complex Using Both Principal Component Analysis and Multi-Dimensional Scaling Analysis of Korean Water Quality Index and Microbial Community Data (Principal Component Analysis와 Multi-Dimensional Scaling 분석을 이용한 시화공단 시흥천의 수질지표 및 미생물 군집 분포 연구)

  • Seo, Kyeong-Jin;Kim, Ju-Mi;Kim, Min-Jung;Kim, Seong-Keun;Lee, Ji-Eun;Kim, In-Young;Zoh, Kyung-Duk;Ko, Gwang-Pyo
    • Journal of Environmental Health Sciences
    • /
    • v.35 no.6
    • /
    • pp.517-525
    • /
    • 2009
  • The water quality of Lake Shihwa had been rapidly deteriorating since 1994 due to wastewater input from the watersheds, limited water circulation and the lack of a wastewater treatment policy. In 2000, the government decided to open the tidal embankment and make a comprehensive management plan to improve the water quality, especially inflowing stream water around Shihwa and Banwol industrial complex. However, the water quality and microbial community have not as yet been fully evaluated. The purpose of this study is to investigate the influent water quality around the industrial area based on chemical and biological analysis, and collected surface water sample from the Siheung Stream, up-stream to down-stream through the industrial complex, Samples were collected in July 2009. The results show that the downstream site near the industrial complex had higher concentrations of heavy metals (Cu, Mn, Fe, Mg, and Zn) and organic matter than upstream sites. A combination of DGGE (Denaturing Gradient Gel Electrophoresis) gels, lists of K-WQI (Korean Water Quality Index), cluster analysis, MDS (Multi-Dimensional Scaling) and PCA (Principal Component Analysis) has demonstrated clear clustering between Siheung stream 3 and 4 and with a high similarity and detected metal reducing bacteria (Shewanella spp.) and biodegrading bacteria (Acinetobacter spp.). These results suggest that use of both chemical and microbiological marker would be useful to fully evaluate the water quality.

Hydrologic and Environmental Assessment of an Infiltration Planter for Roof Runoff Use (지붕 빗물이용을 위하여 개발된 침투화분의 환경·수문학적 평가)

  • Moon, So-Yeon;Choi, Ji-Yeon;Hong, Jung-Sun;Yu, Gi-Gyung;Jeon, Je-Chan;Flores, Precious Eureka D.;Kim, Lee-Hyung
    • Journal of Wetlands Research
    • /
    • v.17 no.4
    • /
    • pp.325-331
    • /
    • 2015
  • Due to urbanization and increase in impervious area, changes in natural water circulation system have become a cause of groundwater recharge reduction, streamflow depletion and other hydrological problems. Therefore, this study developed the infiltration planter techniques applied in an LID facility treating roof stormwater runoff such as, performance of small decentralized retention and infiltration through the reproduction of natural water circulation system and use of landscape for cleaning water. Assessment of an infiltration planter was performed through rainfall monitoring to analyze the water balance and pollutant removal efficiency. Hydrologic assessment of an infiltration planter, showed a delay in time of effluent for roof runoff for about 3 hours and on average, 79% of facilities had a runoff reduction through retention and infiltration. Based on the analysis, pollutant removal efficiency generated in the catchment area showed an average of 97% for the particulate matter, 94% for the organic matter and 86-96% and 92-93% for the nutrients and heavy metals were treated, respectively. Comparative results with other LID facilities were made. For this study, facilities compared the SA/CA to high pollutant removal efficiency for the determination to of the effectiveness of the facility when applied in an urban area.

Effects of Paper Sludge Application on the Chemical Properties of Paddy Soil and Growth of Paddy Rice.;III. Effects of Paper Sludge Application in the Growth of Paddy Rice. (제지(製紙)슬러지의 시용(施用)이 논 토양(土壤)의 화학성(化學性)과 수도생육(水稻生育)에 미치는 영향(影響);III. 슬러지시용(施用)이 수도생육(水稻生育)에 미치는 영향(影響))

  • Heo, Jong-Soo;Kim, Kwang-Sik;Ha, Ho-Sung
    • Korean Journal of Environmental Agriculture
    • /
    • v.7 no.1
    • /
    • pp.26-33
    • /
    • 1988
  • To investigate the effects of paper sludge on the growth response of paddy rice, paper sludge was applied to pots at the rate of either 300, 600, 900 or 1,200 kg/l0a which was either preadjusted at a C/N ratio of 30 : 1 or not adjusted. The effects were compared with those of the control. 1. Plant heights, number of tillers and dry weight were significantly reduced with the increasing application of paper sludge in the early stages of rice growth, whereas opposite results were observed after the heading stage when treated with C/N ratio preadjusted paper sludge. 2. The uptake of $N,P_2O_5,K_2O$ and $SiO_2$ by rice plants grown in paper sludge treated soil was significantly reduced in the early stages of rice growth. Conversely, uptake was enhanced in the C/N ratio preadjusted plot in the young panicle formation stage. 3. Zn, Cu and Cd content in rice straw was in the range of $39{\sim}101$, $0{\sim}0.11$ and $0.03{\sim}0.14ppm$, respectively, and Pb and Cr in rice straw were not detected at all. However, there was no difference in the content of all these heavy metals in rice straw irrespective of treatment.

  • PDF

Toxicity Assessment of the Soil by Bioassay Following a Long-Term Application of Sewage Sludge (생물검정법을 이용한 하수슬러지 장기연용 토양의 독성평가)

  • Nam, Jae-Jak;Lee, Seung-Hwan;Kwon, Soon-Ik;Hong, Suk-Young;Lim, Dong-Kyu;Koh, Mun-Hwan;Song, Beom-Hun
    • Korean Journal of Environmental Agriculture
    • /
    • v.23 no.4
    • /
    • pp.258-263
    • /
    • 2004
  • Bioassay was employed to assess toxicity of soil which had been treated with sewage sludges for seven years. The $Microtox^{(R)}$ and root elongation test of lettuce (Lactuca Sativa.) elucidated that the intensity of soil toxicity was closely related with the types and amount of sewage sludges applied. Both bioassay methods proved to be useful in an assessment of soil toxicity and were consistent to some extent with the conventional chemical analysis methods. $EC_{50}$ values resulted from $Microtox^{(R)}$ were highly correlated with concentration of heavy metals in soils amended with sewage sludges : Cu ($r^2=\;0.86^{**}$), Cr ($r^2\;=\;0.84^{**}$), Ni ($r^2\;=\;0.83^{**}$), and Zn ($r^2\;=\;0.69^{**}$). This demonstrated that both bioassay techniques could be employed as tools for soil toxicity assessment when the soil was exposed to solid wastes such as sewage sludge.

Characteristics of Water Quality in Upper Stream Watershed of Dongjin River (동진강 상류하천 유역의 수질특성)

  • Son, Jae-Gwon;Park, Jong-Min;Choi, Jin-Kyu;Song, Jae-Do
    • Journal of Korean Society of Rural Planning
    • /
    • v.9 no.2 s.19
    • /
    • pp.19-28
    • /
    • 2003
  • It is the purpose of this study to investigate the change of stream water quality in upper stream of Dongjin river, and to give the basic information for the conservation of water quality. Water samples were taken periodically at 9 sampling sites during 8 months from March to October in 2002. The results of this study were as follows : 1. The water temperature and pH of stream water were ranged $9.0{\sim}29.4^{\circ}C,\;6.48{\sim}9.33$, respectively. The COD values of stream water was ranged from 0.60 to 19.06. The contents of T-N and T-P mainly affected by the livestock wastes, and agricultural activity were $1.88{\sim}6.74\;mg/L$, ND(not deleted)${\sim}0.50\;mg/L$, respectively. 2. The SS, DO and BOD values of stream water were ranged $0.4mg/L{\sim}274.0mg/L$, $0.5{\sim}6.0\;mg/L$, and $7.3{\sim}13.7\;mg/L$ respectively. 3. The cation is one of the important components in analysis of stream water quality. The contents of analysis, $Ca^{++},\;Mg^{++},\;Na^+$ and $K^+$ were ranged $1.96{\sim}11.08\;mg/L$, $1.21{\sim}6.16\;mg/L$, $3.38{\sim}18.44\;mg/L$, $1.12{\sim}7.96\;mg/L$, respectively. SAR was ranged $0.31{\sim}1.63$ below 2.0. The contents of cation showed in the order $Na^{++}>Ca^{++}>K^+>Mg^+$. 4. The contents of heavy metal Zn, Cu, and Pb were $ND{\sim}0.071\;mg/L$, $ND{\sim}0.012\;mg/L$, and $ND{\sim}0.043\;mg/L$, respectively. Cd was not detected in all samples. 5. As a result of these researches showed water quality in upper stream watershed of Dongjin river more affected by livestock wastes and living sewage than agricultural activity.

Fabrication of 3D Paper-based Analytical Device Using Double-Sided Imprinting Method for Metal Ion Detection (양면 인쇄법을 이용한 중금속 검출용 3D 종이 기반 분석장치 제작)

  • Jinsol, Choi;Heon-Ho, Jeong
    • Clean Technology
    • /
    • v.28 no.4
    • /
    • pp.323-330
    • /
    • 2022
  • Microfluidic paper-based analytical devices (μPADs) have recently been in the spotlight for their applicability in point-of-care diagnostics and environmental material detection. This study presents a double-sided printing method for fabricating 3D-μPADs, providing simple and cost effective metal ion detection. The design of the 3D-μPAD was made into an acryl stamp by laser cutting and then coating it with a thin layer of PDMS using the spin-coating method. This fabricated stamp was used to form the 3D structure of the hydrophobic barrier through a double-sided contact printing method. The fabrication of the 3D hydrophobic barrier within a single sheet was optimized by controlling the spin-coating rate, reagent ratio and contacting time. The optimal conditions were found by analyzing the area change of the PDMS hydrophobic barrier and hydrophilic channel using ink with chromatography paper. Using the fabricated 3D-μPAD under optimized conditions, Ni2+, Cu2+, Hg2+, and pH were detected at different concentrations and displayed with color intensity in grayscale for quantitative analysis using ImageJ. This study demonstrated that a 3D-μPAD biosensor can be applied to detect metal ions without special analysis equipment. This 3D-μPAD provides a highly portable and rapid on-site monitoring platform for detecting multiple heavy metal ions with extremely high repeatability, which is useful for resource-limited areas and developing countries.

Quality Improvement of Crude Glycerol from Biodiesel Production Using Activated Carbon Derived from Krabok (Irvingia malayana) Seed Shells

  • Wuttichai Roschat;Sarunya Donrussamee;Phatcharanan Smanmit;Samlit Jikjak;Tappagorn Leelatam;Sunti Phewphong;Krittiyanee Namwongsa;Preecha Moonsin;Vinich Promarak
    • Korean Journal of Materials Research
    • /
    • v.34 no.1
    • /
    • pp.1-11
    • /
    • 2024
  • This research investigated the preparation of activated carbon derived from Krabok (Irvingia malayana) seed shells to improve the quality of crude glycerol obtained during biodiesel production. The activated carbon was prepared using a dry chemical activation method with NaOH, utilizing an innovative biomass incinerator. The results revealed that the resulting KC/AC-two-step exhibited favorable physicochemical adsorption properties, with a high surface area of 758.72 m2/g and an iodine number of 611.10 mg/g. These values meet the criteria of the industrial product standard for activated carbon No. TIS 900-2004, as specified by the Ministry of Industry in Thailand. Additionally, the adsorption efficiency for methylene blue reached an impressive 99.35 %. This developed activated carbon was then used to improve the quality of crude glycerol obtained from biodiesel production. The experimental results showed that the KC/AC-two-step increased the purity of crude glycerol to 73.61 %. In comparison, commercially available activated carbon (C/AC) resulted in a higher crude glycerol purity of 81.19 %, as analyzed by the GC technique. Additionally, the metal content (Zn, Cu, Fe, Pb, Cd, and Na) in purified glycerol using KC/AC-two-step was below the standards for heavy metals permitted in food and cosmeceuticals by the Food and Drug Administration of Thailand and the European Committee for Food Contact Materials and Articles. As a result, it can be inferred that Krabok seed shells have favorable properties for producing activated carbon suitable as an adsorbent to enhance crude glycerol purity. Furthermore, the improved crude glycerol from this research has potential for various industrial applications.

Changes in Chemical Properties of Paddy Field Soils as Influenced by Regional Topography in Jeonbuk Province (지형특성에 따른 전북지역 논토양 화학성 변화)

  • Ahn, Byung-Koo;Lee, Jin-Ho;Kim, Kab-Cheol;Kim, Hyung-Gook;Jeong, Seong-Soo;Jeon, Hye-Won;Zhang, Yong-Sun
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.45 no.3
    • /
    • pp.393-398
    • /
    • 2012
  • We investigated the changes in chemical properties of paddy field soils at 300 different sampling sites containing 4 topography in Jeonbuk province, Korea. The soil samples were collected 43.0% from local valley and fans, 39.3% from fluvio-marine deposits, 15.0% from alluvial plains, and 2.7% from diluvium sites. The optimal values of soil properties in the total soil samples were as follows: 65.3% of total samples in soil pH value, 48.3% of total samples in cation exchange capacity (CEC) value, and 22.3% of total samples in available phosphorus content, whereas the deficient values of soil properties were 63.3% of total samples in soil organic matter (SOM) content, 75.7% of total samples in available silicate content, and 61.3%, 51.0%, and 59.3% of total samples in exchangeable $K^+$, $Ca^{2+}$, and $Mg^{2+}$ concentrations, respectively. There were different soil types in the paddy fields: that is, 34.4% immature paddy and 33.6% sandy paddy in the local valley and fans, 57.8% sandy paddy in the alluvial plains, 47.4% normal paddy in the fluvio-marine deposits, and 75.7% immature paddy in the diluvium. Soil textures were also different: 53.5% loam in the local valley and fans, 37.8% sandy loam in the alluvial plains, and 55.1% silty loam in the fluvio-marine deposits. Soil pH and SOM contents were not different among the different topographical sampling sites. However, the mean value of available phosphorus content, 224 mg $kg^{-1}$, was exceeded optimal values in the diluvium. The contents of exchangeable cations were optimal in all the sites, except exchangeable $Ca^{2+}$ contents in the local valley and fans. The contents of available silicate ranged between 112 and 127 mg $kg^{-1}$ in all the sites, which were lower than optimal value. In addition, soil pH values were proportionally correlated to the order of available silicate, exchangeable $Ca^{2+}$, $Mg^{2+}$, $Na^+$, CEC, and exchangeable $K^+$. The contents of SOM were proportionally correlated to the order of CEC, available $P_2O_5$, exchangeable $Ca^{2+}$, and available silicate. The contents of heavy metals, Cd, Cr, Cu, Ni, Pb, and Zn, were only 10% of the threshold levels of the metals, and As content was about 20 to 30% of the threshold level.

A Study on Chemical Composition of Fine Particles in the Sungdong Area, Seoul, Korea (서울 성동구 지역 미세먼지의 화학적 조성에 관한 연구)

  • 조용성;이홍석;김윤신;이종태;박진수
    • Journal of Environmental Science International
    • /
    • v.12 no.6
    • /
    • pp.665-676
    • /
    • 2003
  • To investigate the chemical characteristics of PM$\_$2.5/ in Seoul, Korea, atmospheric particulate matters were collected using a PM$\_$10/ dichotomous sampler including PM$\_$10/ and PM$\_$2.5/ inlet during the period of October 2000 to September 2001. The Inductively Coupled Plasma-Mass Spectromety (ICP-MS), ion Chromatography (IC) methods were used to determine the concentration of both metal and ionic species. A statistical analysis was performed for the heavy metals data set using a principal component analysis (PCA) to derived important factors inherent in the interactions among the variables. The mean concentrations of ambient PM$\_$2.5/ and PM/sub10/ were 24.47 and 45.27 $\mu\textrm{g}$/㎥, respectively. PM$\_$2.5/ masses also showed temporal variations both yearly and seasonally. The ratios of PM$\_$2.5/PM$\_$10/ was 0.54, which similar to the value of 0.60 in North America. Soil-related chemical components (such as Al, Ca, Fe, Si, and Mn) were abundant in PM$\_$10/, while anthropogenic components (such as As, Cd, Cr, V, Zn and Pb) were abundant in PM2s. Total water soluble ions constituted 30∼50 % of PM$\_$2.5/ mass, and sulfate, nitrate and ammonium were main components in water soluble ions. Reactive farms of NH$_4$$\^$+/were considered as NH$_4$NO$_3$ and (NH$_4$)$_2$SO$_4$ during the sampling periods. In the results of PCA for PM$\_$2.5/, we identified three principal components. Major contribution to PM$\_$2.5/ seemed to be soil, oil combustion, unidentified source. Further study, the detailed interpretation of these data will need efforts in order to identify emission sources.