• 제목/요약/키워드: Heavy Plate

검색결과 315건 처리시간 0.024초

산업부산물을 활용한 건조수축 제어용 무시멘트 보드의 강도특성 (Strength properties of non-cement board for drying shrinkage control using industrial by-products)

  • 박주화;편수정;이동훈;이상수
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2018년도 춘계 학술논문 발표대회
    • /
    • pp.228-229
    • /
    • 2018
  • In the construction industry, we have set goals such as reduction of greenhouse gas emissions and reduction of energy use. In particular, reduction of CO2 emissions in the concrete manufacturing process, reduction of industrial waste and industrial wastes into concrete The zero-emission level of reuse as a resource is under review. On the other hand, the cost of stone is expensive due to small quantity production of domestic stone production in order, it is difficult to carry and construct with heavy material, and it takes long time to construct. In order to solve the shortage of supply and demand of natural stone, various kinds of stone powder, artificial stone made by putting stone texture on the surface of mortar or concrete, fiber reinforced plate, tiles and the like are increasingly used. In this study, the artificial stone using slag and recycled aggregate instead of natural stone was fabricated and the strength characteristics were evaluated for its applicability and feasibility.

  • PDF

CaO-SiO2-Al2O3-MgO-CaF2 슬래그의 질소용해도에 관한 연구 (Nitrogen Dissolution in CaO-SiO2-Al2O3-MgO-CaF2 Slags)

  • 백승배;임종호;정우진;이승원
    • 한국재료학회지
    • /
    • 제24권2호
    • /
    • pp.81-86
    • /
    • 2014
  • The nitrogen solubility and nitride capacity of $CaO-SiO_2-Al_2O_3-MgO-CaF_2$ slag systems were measured by using gas-liquid equilibration at 1773K. The nitrogen solubility of this slag system decreased with increasing CO partial pressure, with the linear relationship between nitrogen contents and oxygen partial pressure being -3/4. This system was expected to show two types of nitride solution behavior. First, the nitrogen solubility decreased to a minimum value and then increased with the increase of CaO contents. These mechanisms were explained by considering that nitrogen can dissolve into slags as "free nitride" at high basicities and as "incorporated nitride" within the network at low basicities. Also, the basicity of slag and nitride capacity were explained by using optical basicity. The nitrogen contents exhibited temperature dependence, showing an increase in nitrogen contents with increasing temperature.

타의 종류에 따른 선박의 파랑 중 직진성능에 관한 연구 (Study on Variation in Ship's Course Keeping Ability under Waves Depending on Rudder Type)

  • 구본국;이종현;강동훈
    • 한국해양공학회지
    • /
    • 제27권2호
    • /
    • pp.87-92
    • /
    • 2013
  • The variation in the course keeping ability in relation to rudder type is investigated using simulations with 3 different types of rudders (a normal rudder, normal rudder with a plate, and Schilling rudder) under wave conditions. The simulation is developed based on an MMG model with Kijima's regression model, along with the data from Son's experiments and Kose's experiments. A 3-D source distribution method is applied to calculate the source of the external wave forces for the simulation. The coefficients of an autopilot controller that may affect the course keeping ability are also estimated from the simulations with the different rudders. The course keeping ability is evaluated by comparing the forward distances while the ships are simulated with the rudders and autopilot controller.

구면투영법을 이용한 수중표적의 근거리장 소나단면적 해석 (Near-field Sonar Cross Section Analysis of Underwater Target Using Spherical Projection Method)

  • 김국현;조대승
    • 대한조선학회논문집
    • /
    • 제45권6호
    • /
    • pp.695-702
    • /
    • 2008
  • In this paper, a new numerical method is proposed to analyze near-field sonar cross section of acoustically large-sized underwater targets such as submarines. A near-field problem is converted to a far-field problem using a spherical projection method with respect to the objective target. Then, sonar cross section is calculated with a physical optics well established in far-field acoustic wave scattering problems. The analysis results of a square flat plate compared with those obtained by other method show the accuracy of the proposed method. Moreover, it is noted that the sonar cross section is varied with respect to the targeting point as well as the range. Finally, numerical analysis results of real-like underwater target such as a submarine pressure hull are discussed.

구조물용 강재의 파단기준에 대한 실험 및 이론 연구 (Experimental and Theoretical Investigations on the Fracture Criteria for Structural Steels)

  • 정준모;조상래
    • 대한조선학회논문집
    • /
    • 제45권2호
    • /
    • pp.157-167
    • /
    • 2008
  • Six smooth flat tensile specimens and eighteen punch specimens with three different thicknesses were machined from steel of JIS G3131 SPHC. In addition to punch tests, incremental tensile tests were conducted to obtain average true flow stress - logarithmic true strain curves. Through parametric FE simulations for the tensile specimens, material parameters related to GTN model were identified. Using indenters with three kinds of radius, punch tests were carried out to obtain fracture characteristics of punch specimens. Numerical analyses using both fracture models, GTN and $J_2$ plasticity model, gave that the former estimated well the fracture of punch specimen but the latter did not. A new concept for critical size of plate elements was introduced based on minimum relative sharpness between contact structures. Consequently, a new criterion for critical element size was proposed to be less than 20% of minimum relative radius of interacting structures.

해상 사장교의 Pipe형 케이블 정착구에 관한 구조해석 (Structural Analysis of a Cable Anchor System for a Cable-Stayed Bridge over the Sea)

  • 공병승;홍남식
    • 한국해양공학회지
    • /
    • 제19권5호
    • /
    • pp.34-42
    • /
    • 2005
  • The cable connection zone of the cable-stayed bridge transfers deal-load, live-load, and second-load to the cables on the structural joint zone of the cables and the main girders are the most critical parts in which big cable tensile forces are generated by those loads. Therefore, it is necessary to thoroughly check the main girder, structurally to secure the required stability. Because of the heavy tensile force of cables linked in the connection zone of the cable-stayed bridge, locally concentrated stress, as well as the dispersion of stress, occurs in the structurally contacted point of cable and main girder thus, we need to make a thorough investigation through a detailed structural analysis. Directly delivering the tensile force to the connection zone of the cable, the consequently big effect in the tensile force fluctuation caused by the live-load will make it necessary to review the fatigue strength. As the connection zone of the cable is designed to resist the tensile force of the cable, which is applied to a connecting section as a concentrated force, thick plates are used. These plates are frequently made of welded structure, thus, the investigation of the welding workability is inevitable.

수중모함에서 사출되는 고속 수중운동체의 초기 거동 모델링 및 시뮬레이션 (Modeling and Simulation for the Initial Dynamics of a High Speed Underwater Vehicle Ejected from a Submerged Mother Ship)

  • 윤현규;조현진
    • 한국군사과학기술학회지
    • /
    • 제19권2호
    • /
    • pp.227-235
    • /
    • 2016
  • Heavy-weight high speed underwater vehicle(HSUV) is launched from the submerged mother ship. For the safety point of view, it is important to confirm whether the HSUV would touch the launching mother ship. In this paper, the hydrodynamic force and moment were modeled by the polynomials of motion variables and the simple lift and drag acting on a plate and cylinder which consist of the HSUV's several parts. The mother ship was assumed as the Rankine half body to consider the flow field near the moving ship. Such hydrodynamic force and moment were included in the 6 DOF equations of motion of the HSUV and the dynamic simulations for the various conditions of the HSUV until the propeller activation were performed. Developed simulation program is expected to reduce the number of expensive sea trial test to develop safety logic of the HSUV at the initial firing stage.

A Study on the Optimum Design of Cylinder Block in Swash Plate Type Oil Hydraulic Piston Pump

  • Baek, Il-Hyun;Cho, Ihn-Sung;Jung, Jae-Youn;Choi, Byung-In;Oh, Seok-Hyung
    • KSTLE International Journal
    • /
    • 제8권2호
    • /
    • pp.29-34
    • /
    • 2007
  • Recently, requirements relating to performance, environment and noise in the oil hydraulic system of the heavy construction equipment have been reinforced continuously. In order to solve these technical trends, studies on the system compactness, operation under high pressure and great rotating speed, electronic control, substitute oil, and noise reduction have been progressed briskly. Among these recent studies, the system operation under high pressure is quite difficult to carry into effect due to mechanical limitations; that is, for realizing the system operation in the hydraulic pump under high pressure, the improvements or innovations on the design techniques, the manufacturing techniques, and the lubrication performance of the working oil are required. Accordingly, in this study, the stress distribution and optimum design factors under the maximum pressure were discussed by using stress analysis on the cylinder block of the hydraulic axial piston pump, which is one of the most important relative sliding regions.

잔교식 안벽의 말뚝 두부 내진 보강기법에 따른 수평재하실험 (Lateral Load Test for Various Aseismatic Methods of Pile Heads of Pier Type Quay Walls)

  • 이용재;한진태;장인성;김명모
    • 한국지진공학회:학술대회논문집
    • /
    • 한국지진공학회 2003년도 추계 학술발표회논문집
    • /
    • pp.98-106
    • /
    • 2003
  • To construct pile-supported wharf structures that must support heavy horizontal loads, both vertical piles and batter piles are used. Batter piles are used to secure the bearing capacity against the horizontal loads. However, past case histories have shown that the heads of batter piles are vulnerable because these heads are subjected to excessive axial loads during earthquakes. Therefore, the aseismatic reinforcement method must be developed to prevent batter pile heads from breaking due to excessive seismic loads. Two different connecting methods of either inserting rubber or ball-bearing between batter pile head and upper plate were proposed to improve the aseismatic efficiency. Three large-scale pile head models(rubber type model, ball-bearing type model, and fixed type model) were manufactured and horizontal loading tests were peformed for these models. The results showed that the force-displacement relationship of the fixed type model was linear, but that of the rubber type model and the ball-bearing type model was bilinear. The increase in the horizontal displacement led to the increase in the horizontal stiffness of the rubber type models and the decrease in that of the ball-bearing type model. Compared with the values for fixed type model, the damping ratios of the rubber type model and the ball-bearing type model increased about 33~185% and 263~269%, respectively.

  • PDF

Cyclic loading response of footing on multilayered rubber-soil mixtures

  • Tafreshi, S.N. Moghaddas;Darabi, N. Joz;Dawson, A.R.
    • Geomechanics and Engineering
    • /
    • 제14권2호
    • /
    • pp.115-129
    • /
    • 2018
  • This paper presents a set of results of plate load tests that imposed incremental cyclic loading to a sandy soil bed containing multiple layers of granulated rubber-soil mixture (RSM) at large model scale. Loading and unloading cycles were applied with amplitudes incrementally increasing from 140 to 700 kPa in five steps. A thickness of the RSM layer of approximately 0.4 times the footing diameter was found to deliver the minimum total and residual settlements, irrespective of the level of applied cyclic load. Both the total and residual settlements decrease with increase in the number of RSM layers, regardless of the level of applied cyclic load, but the rate of reduction in both settlements reduces with increase in the number of RSM layers. When the thickness of the RSM layer is smaller, or larger, settlements increase and, at large thicknesses may even exceed those of untreated soil. Layers of the RSM reduced the vertical stress transferred through the foundation depth by distributing the load over a wider area. With the inclusion of RSM layers, the coefficient of elastic uniform compression decreases by a factor of around 3-4. A softer response was obtained when more RSM layers were included beneath the footing damping capacity improves appreciably when the sand bed incorporates RSM layers. Numerical modeling using "FLAC-3D" confirms that multiple RSM layers will improve the performance of a foundation under heavy loading.