• Title/Summary/Keyword: Heavy $Ca^{2+}-buffering$

Search Result 8, Processing Time 0.022 seconds

Heterogeneity of the SR-dependent Inward $Na^+-Ca^{2+}$ Exchange Current in the Heavily $Ca^{2+}-buffered$ Rat Ventricular Myocytes

  • Yoon, Kyung-Bong;Ahn, Sung-Wan;Ko, Chang-Mann
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.8 no.2
    • /
    • pp.101-110
    • /
    • 2004
  • Voltage-sensitive release mechanism was pharmacologically dissected from the $Ca^{2+}-induced\;Ca^{2+}\;release$ in the SR $Ca^{2+}$ release in the rat ventricular myocytes patch-clamped in a whole-cell mode. SR $Ca^{2+}$ release process was monitored by using forward-mode $Na^+-Ca^{2+}$ exchange after restriction of the interactions between $Ca^{2+}$ from SR and $Na^+-Ca^{2+}$ exchange within micro-domains with heavy cytosolic $Ca^{2+}$ buffering with 10 mM BAPTA. During stimulation every 10 s with a pulse roughly mimicking action potential, the initial outward current gradually turned into a huge inward current of $-12.9{\pm}0.5\;pA/pF$. From the inward current, two different inward $I_{NCX}s$ were identified. One was $10\;{\mu}M$ ryanodine-sensitive, constituting $14.2{\pm}2.3%$. It was completely blocked by $CdCl_2$ (0.1 mM and 0.5 mM) and by $Na^+-depletion$. The other was identified by 5 mM $NiCl_2$ after suppression of $I_{CaL}$ and ryanodine receptor, constituting $14.8{\pm}1.6%$. This latter was blocked by either 10 mM caffeine-induced SR $Ca^{2+}-depletion$ or 1 mM tetracaine. IV-relationships illustrated that the latter was activated until the peak in $30{\sim}35\;mV$ lower voltages than the former. Overall, it was concluded that the SR $Ca^{2+}$ release process in the rat ventricular myocytes is mediated by the voltage-sensitive release mechanism in addition to the $Ca^{2+}-induced-Ca^{2+}\;release$.

Electrokinetic Extraction of Metals from Marine Sediment (중금속으로 오염된 해양퇴적토의 전기동력학적 정화)

  • Kim, Kyung-Jo;Yoo, Jong-Chan;Yang, Jung-Seok;Baek, Kitae
    • Korean Chemical Engineering Research
    • /
    • v.51 no.6
    • /
    • pp.733-738
    • /
    • 2013
  • Sediment contains a high fraction of organic matter, high buffering capacity, and a large portion of fine grained particles such as silt and clay, which are major barriers to remove heavy metals from sediments. In this study, a lab-scale electrokinetic (EK) technique was applied to remove heavy metals effectively from marine sediment at a constant voltage gradient of 2 V/cm. A concentration of 0.1 M of ethylenediaminetetraacetic acid (EDTA), citric acid (CA), $HNO_3$, and HCl were circulated in the cathode, and tap water was circulated in the anode. CA extracted 92.4% of Ni, 96.1% of Cu, 97.1% of Zn, and 88.1% of Pb from marine sediment. A higher voltage gradient enhanced the transport of citrate and EDTA into the sediment and, therefore, increased metal extraction from the marine sediment through a complexation reaction between metals and the chelates. Based on these results, the electrokinetic process using a high voltage gradient with EDTA and CA might be useful to extract heavy metals from marine sediment.

The Effects of Carbonate Minerals in Gully-pot Sediment on the Leaching Behavior of Heavy Metals Under Acidified Environment (우수관퇴적물에 함유된 탄산염광물이 산성환경에서의 중금속 용출거동에 미치는 영향 평가)

  • 이평구;유연희
    • Economic and Environmental Geology
    • /
    • v.35 no.3
    • /
    • pp.257-271
    • /
    • 2002
  • One of the main interests in relation to heavily contaminated gully-pot sediment in urban area is the short term mobility of heavy metals, which depends on the pH of acidic rainwater and on the buffering effects of carbonate minerals. The buffering effects of carbonates are determined by titration (acid addition). Leaching experiments are carried out in solutions with variable initial HN03 contents for 24h. The gully-pot sediment appears to be predominantly buffered by calcite and dolomite. In case of sediment samples, which highly contain carbonates, pH decreases more slowly with increasing acidity. On the other hand, for the sediment samples, which less contain carbonate minerals, pH rapidly drops until it reaches about 2 then it decreases slowly. The leaching reactions are delayed until more acid is added to compensate for the buffering effects of carbonates. The Zn, Cu, Pb and Mn concentrations of leachate rapidly increase with decreased pH, while Cd, Co, Ni, Cr and Fe dissolutions are very slow and limited. The solubility of heavy metals depends not only on thc pH values of leachatc but also on the speciation in which metals are associated with sediment particles. In slightly to moderately acid conditions, Zn, Cd, Co, Ni and Cu dissolutions become increasingly important. As deduced from leaching runs, the relative mobility of heavy metals at pH of 5 is found to be: Zn > Cd > Co > Ni > Cu » Pb > Cr, suggesting that moderately acid rainwater leach Zn, Cd, Co, Ni and Cu from thc contaminated gully-pot sediment, while Pb and Cr would remain fixed. The buffering effects of Ca- and Mg-carbonates play an important role in delaying as well as limiting the leaching reactions of heavy metals from highly contaminated gully-pot sediment. The extent of such a secondary environmental pollution will thus depends on how well the metals in sediment can be leached by somewhat acidic rain water. Changes in the physicochemical environments may result in the severe environmental pollution of heavy metals. These results are to be taken into account in the management of contaminated sediments during rainstorms.

Chemical Assessment of Heavy Metal Contamination in Soil

  • Yang, Jae-E.;Choi, Moon-Heon
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 1997.05a
    • /
    • pp.8-11
    • /
    • 1997
  • Current methods of evaluating soil contamination by heavy metals rely on analyzing samples for total contents of metals or quantities recovered in various chemical extracting solutions. Results from these approaches provide only an index for evaluation because these methodologies yield values not directly related to bioavailability of soil-borne metals. In addition, even though concentrations of metals may be less than those required to cause toxic effects to biota, they may cause substantial effects on soil chemical parameters that determine soil quality and sustainable productivity. The objective of this research was to characterize effects of Cu or Cd additions on soil solution chemistry of soil quality indices, such as pH, EC, nutrient cation distribution and quantity/intensity relations (buffer capacity). Metals were added at rates ranging from 0 to 400 mg/kg of soil. Soil solution was sequentially extracted from saturated pastes using vacuum. Concentrations of Cu or Cd remaining in soil solutions were very low as compared to those added to the soils, warranting that most of the added metals were recovered as nonavailable (strongly adsorbed) fractions. Adsorption of the added metals released cations into soil solution causing increases of soluble cation contents and thus ionic strength of soil solution. At metal additions of 200~400 mg/kg, EC of soil solution increased to as much as 2~4 dS/m; salinity levels considered high enough to cause detrimental effects on plant production. More divalent cations (Ca+Mg) than monovalent cations (K+Na) were exchanged by Cu or Cd adsorption. The loss of exchangeable nutrient cations decreased long-term nutrient supplying capacity or each soil. At 100 mg/kg or metal loading, the buffering capacity was decreased by 60%. pH of soil solution decreased linearly with increasing metal loading rates, with a decrement of up to 1.3 units at 400 mg Cu/kg addition. Influences of Cu on each of these soil quality parameters were consistently greater than those of Cd. These effects were of a detrimental nature and large enough in most cases to significantly impact soil productivity. It is clear that new protocols are needed for evaluating potential effects of heavy metal loading of soils.

  • PDF

Evaluation of Heavy Metal Contamination in Streams within Samsanjeil and Sambong Cu Mining Area (삼산제일.삼봉 동광산 주변 수계의 중금속 오염도 평가)

  • Kim, Soon-Oh;Jung, Young-Il;Cho, Hyen-Goo
    • Journal of the Mineralogical Society of Korea
    • /
    • v.19 no.3 s.49
    • /
    • pp.171-187
    • /
    • 2006
  • The status of heavy metal contamination was investigated using chemical analyses of stream waters and sediments obtained from Samsanjeil and Sambong Cu mining area in Goseong-gun, Gyeongsangnam-do. In addition, the degree and the environmental risk of heavy metal contamination in stream sediments was assessed through pollution index (Pl) and danger index (DI) based on total digestion by aqua regia and fractionation of heavy metal contaminants by sequential extraction, respectively. Not only the degree of heavy metal contamination was significantly higher in Samsanjeil area than in Sambong area, but its environmental risk was also revealed much more serious in Samsanjeil area than in Sambong area. The differences in status and level of contamination and environmental risk between both two mining areas may be attributed to existence of contamination source and geology. Acid mine drainage is continuously discharged and flows into the stream in Samsanjeil mining area, and it makes the heavy metal contamination in the stream more deteriorated than in Sambong mining area in which acid mine drainage is not produced. In addition, the geology of Samsanjeil mining area is mainly comprised of andesitic rocks including a small amount of calcite and having lower pH buffering capacity fer acid mine drainage, and it is likely that the heavy metal contamination cannot be naturally attenuated in streams. On the contrary, the main geology of Sambong mining area consists of pyroclastic sedimentary Goseong formation containing a high content of carbonates, particularly calcite, and it seems that these carbonates of high pH buffering capacity prevent the heavy metal contamination from proceeding downstream in stream within that area.

Impact of Residual Hydrofluoric Acid on Leaching of Minerals and Arsenic from Different Types of Geological Media (잔류 불산에 의한 모델 지질토양시료의 광물 용해 및 비소 용출 특성)

  • Jeon, Pilyong;Moon, Hee Sun;Shin, Doyun;Hyun, Sung Pil
    • Journal of Soil and Groundwater Environment
    • /
    • v.23 no.2
    • /
    • pp.23-29
    • /
    • 2018
  • This study explored secondary effects of the residual hydrofluoric acid (HF) after a hypothetical acid spill accident by investigating the long-term dissolution of minerals and leaching of pre-existing arsenic (As) from two soil samples (i.e., KBS and KBM) through batch and column experiments. An increase in the HF concentration in both soil samples resulted in a dramatic increase in the release of major cations, especially Si. However, the amounts of mineral dissolved were dependent on the soil type and mineral characteristics. Compared to the KBM soil, relatively more Ca, Mg and Si were dissolved from the KBS soil. The column experiment showed that the long-term dissolution rates of the minerals are closely associated with the acid buffering capacity of the two soils. The KBM soil had relatively higher effluent pH values compared to the KBS soil. Also, more As was leached from the KBM soil, with a more amorphous hydrous oxide-bound As fraction. These results suggest that the potential of heavy metal leaching by the residual acid after an acid spill will be influenced by heavy metal speciation and mineral structure in the affected soil.

Environmental effects from Natural Waters Contaminated with Acid Mine Drainage in the Abandoned Backun Mine Area (백운 폐광산의 방치된 폐석으로 인한 주변 수계의 환경적 영향)

  • 전서령;정재일;김대현
    • Economic and Environmental Geology
    • /
    • v.35 no.4
    • /
    • pp.325-337
    • /
    • 2002
  • We examined the contamination of stream water and stream sediments by heavy metal elements with respect to distance from the abandoned Backun Au-Ag-Cu mine. High contents of heavy metals (Pb, Zn, Cu, Cd, Mn, and Fe) and aluminum in the waters connected with mining and associated deposits (dumps, tailings) reduce water quality. In the mining area, Ca and SO$_4$ are predominant cation and anion. The mining water is Ca-SO$_4$ type and is enriched in heavy metals resulted from the weathering of sulfide minerals. This mine drainage water is weakly acid or neutral (pH; 6.5-7.1) because of neutralizing effect by other alkali and alkaline earth elements. The effluent from the mine adit is also weakly acid or neutral, and contains elevated concentrations of most elements due to reactions with ore and gangue minerals in the deposit. The concentration of ions in the Backun mining water is high in the mine adit drainage water and steeply decreased award to down stream. Buffering process can be reasonably considered as a partial natural control of pollution, since the ion concentration becomes lower and the pH value becomes neutralized. In order to evaluate mobility and bioavailability of metals, sequential extraction was used for stream sediments into five operationally defined groups: exchangeable, bound to carbonates, bound to FeMn oxide, bound to organic matter, and residual. The residual fraction was the most abundant pool for Cu(2l-92%), Zn(28-89%) and Pb(23-94%). Almost sediments are low concentrated with Cd(2.7-52.8 mg/kg) than any other elements. But Cd dominate with non stable fraction (68-97%). Upper stream sediments are contaminated with Pb, and down area sediments are enriched with Zn. It is indicate high mobility of Zn and Cd.

Geochemistry of Stream Water around the Abandoned Boeun Coal Mine, Hoenam Area (보은제일폐탄광 주변 하천수의 지구화학적 특징)

  • Jeon, Seo-Ryeong;Shin, Ik-Jong;Lee, Kyu-Seung
    • Korean Journal of Environmental Agriculture
    • /
    • v.20 no.1
    • /
    • pp.20-27
    • /
    • 2001
  • Stream water chemistry in the abandoned Boeun Jeil coal mine area was studied for a period of 3 months, including rainy and dry season. The stream waters were a nearly neutral and slightly alkali condition, and $Mg-SO_4$ type with Mg>Ca>Na>K and $SO_4>HCO_3>Cl>NO_3$. Chemical composition of the stream water was quite irregular during the experimental period. Concentrations of Na, K, $HCO_3$, U, Sr, and Cr decreased by $10{\sim}30%$ during rainy season, caused by dilution effects with rain. The concentration of Ca, Mg, $NO_3$, Cd, and Co increased during the rainy season, caused by more easily dissolved from bedrocks or mine drainage with slightly acidic condition than dry season. The stream water was enriched in Mg, Ca, $HCO_3$, $SO_4$, Al, Fe, Zn, Ni, Co, Cr, Cd, Sr and U. Concentrations of Na, Mg, Ca, $SO_4$, $HCO_3$, Fe, Zn, Ni, Sr, and U decreased linearly with distance from the mine adit. These elements were strongly controlled by dilution of unpolluted water influx and/or adsorption on the clay minerals and iron oxyhydroxide precipitates. This mine area exhibited two main weathering processes ; 1) oxidation with acidification derived from Fe sulphides, and 2) pH buffering due to Ca and Mg carbonate dissolution. This weathering processes were followed by adsorption of metals on iron oxyhydroxides and precipitation.

  • PDF