• Title/Summary/Keyword: Heatmap

Search Result 53, Processing Time 0.019 seconds

Seasonal variation in longitudinal connectivity for fish community in the Hotancheon from the Geum River, as assessed by environmental DNA metabarcoding

  • Hyuk Je Lee;Yu Rim Kim;Hee-kyu Choi;Seo Yeon Byeon;Soon Young Hwang;Kwang-Guk An;Seo Jin Ki;Dae-Yeul Bae
    • Journal of Ecology and Environment
    • /
    • v.48 no.1
    • /
    • pp.32-48
    • /
    • 2024
  • Background: Longitudinal connectivity in river systems strongly affects biological components related to ecosystem functioning, thereby playing an important role in shaping local biodiversity and ecosystem health. Environmental DNA (eDNA)-based metabarcoding has an advantage of enabling to sensitively diagnose the presence/absence of species, becoming an efficient/effective approach for studying the community structure of ecosystems. However, little attention has been paid to eDNA-based biomonitoring for river systems, particularly for assessing the river longitudinal connectivity. In this study, by using eDNA we analyzed and compared species diversity and composition among artificial barriers to assess the longitudinal connectivity of the fish community along down-, mid- and upstream in the Hotancheon from the Geum River basin. Moreover, we investigated temporal variation in eDNA fish community structure and species diversity according to season. Results: The results of species detected between eDNA and conventional surveys revealed higher sensitivity for eDNA and 61% of species (23/38) detected in both methods. The results showed that eDNA-based fish community structure differs from down-, mid- and upstream, and species diversity decreased from down to upstream regardless of season. We found that there was generally higher species diversity at the study sites in spring (a total number of species across the sites [n] = 29) than in autumn (n = 27). Nonmetric multidimensional scaling and heatmap analyses further suggest that there was a tendency for community clusters to form in the down-, mid- and upstream, and seasonal variation in the community structure also existed for the sites. Dominant species in the Hotancheon was Rhynchocypris oxycephalus (26.07%) regardless of season, and subdominant species was Nipponocypris koreanus (16.50%) in spring and Odontobutis platycephala (15.73%) in autumn. Artificial barriers appeared to negatively affect the connectivity of some fish species of high mobility. Conclusions: This study attempts to establish a biological monitoring system by highlighting the versatility and power of eDNA metabarcoding in monitoring native fish community and further evaluating the longitudinal connectivity of river ecosystems. The results of this study suggest that eDNA can be applied to identify fish community structure and species diversity in river systems, although some shortcomings remain still need to be resolved.

Comparison of Biological Responses and Heat Shock Protein 70 Expression in Chironomidae by Exposure UV and O3 (UV와 O3 노출에 따른 깔따구류의 생물학적 반응 및 열충격 단백질 70 발현)

  • Ji-Hoon Kim;Won-Seok Kim;Jae-Won Park;Bong-Soon Ko;Kiyun Park;Ihn-Sil Kwak
    • Korean Journal of Ecology and Environment
    • /
    • v.56 no.4
    • /
    • pp.430-439
    • /
    • 2023
  • UV and O3 are materials used in the water treatment process, and many studies have been reported to remove organic matters, contaminants, and microorganisms. In this study, we were investigated effects of Chirnomidae (Chironomus flaviplumus, Chironomus riparius), which are contamination indicator species to exposure UV and O3 for the survival rate, body color change and gene expression response. The survival rate of C. flaviplumus exposed to UV decreased to about 70% after 24 hours, and C. riparius about 50%. There was no change in the survival rate of C. flaviplumus exposed to O3, and C. riparius decreased to 95% after 10 minutes of exposure, but there was no change during the subsequent exposure time. In addition, UV and O3 exposure to the two species in body color faded in a time-dependent. In the HSP70 gene expression, C. riparius showed an increase in expression after UV exposure compared to the control group, and a significant difference was shown 12 hours after exposure (P<0.05). C. flaviplumus exposed to O3 showed a relatively low expression compared to the control group, and showed a significant difference at 10 minutes and 1 hour after exposure (P<0.05). These results reported the ecotoxicological effects on Chironomidae according to UV and O3 exposure. Therefore, the results of this study can be used as basic data to understand the effects of UV and O3, which are disinfectants used in water treatment plants, on Chirnomidae entering plants.

Changes in Phytosterol Content in Cobs and Kernels During Physiological Maturity of Corn Ears (옥수수 이삭 등숙 기간 동안 속대와 종실의 Phytosterol 함량 변화)

  • Jun Young Ha;Young Sam Go;Jae Han Son;Mi-Hyang Kim;Kyeong Min Kang;Tae Wook Jung;Beom Young Son;Hwan Hee Bae
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.68 no.4
    • /
    • pp.392-401
    • /
    • 2023
  • Corn (Zea mays L.) is one of the world's most important crops, along with wheat and rice, with a global corn production expected to reach 1,154.5 million tons in 2023. Considering this grain production, The generation of corn cob is expected to reach approximately 207.8 million tons in 2023. However, as an agricultural by-product, corn cobs are often considered waste and remain underutilized. Phytosterols, which are abundant in vegetable oils such as corn oil, provide a number of health benefits, including liver health, cholesterol reduction, and protection against chronic diseases such as diabetes. In this study, we investigated the potential of Kwangpyeongok ears, which are commonly used as grain and silage corn in Korea. We also examined the variation in phytosterol content with the maturity of corn ears to identify the optimal time for utilization. At the beginning of physiological maturity, corn cobs had 113.3 mg/100g DW of total phytosterols, which was highest phytosterol abundance during the growth stage. Corn kernels also had the highest phytosterol content at the beginning of physiological maturity. While previous studies on corn bioactive compounds have mainly focused on the kernels, the results of this study highlight that cobs are an excellent source of these compounds. Furthermore, phytosterol levels were influenced by genetic factors and developmental stages, suggesting the to increase the use of cobs as a source of bioactive compounds.