• Title/Summary/Keyword: Heating source

Search Result 897, Processing Time 0.026 seconds

A Numerical Study of Automotive Indoor Thermal Comfort Model According to Boarding Conditions and Parameters Related to HVAC (HVAC 관련 매개변수 및 탑승조건에 따른 자동차 실내의 온열쾌적성 평가모델에 관한 수치해석적 연구)

  • Yoon, Seong Hyun;Park, Jun Yong;Son, Deok Young;Choi, Yunho;Park, Kyungseok
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.38 no.9
    • /
    • pp.979-988
    • /
    • 2014
  • Recently, the interest in the thermal comfort is ever increasing as the time people stay in the automobile is gradually increasing. So far, however, the cooling performance of the HVAC(heating and ventilation air conditioning) system is evaluated by thermal environment criteria such as indoor air velocity and temperature, not by a thermal comfort index. Furthermore, the precise criteria has not been established yet when the thermal comfort for the automobile is evaluated using numerical analysis. In this study, the numerical analysis of automobile indoor thermal comfort according to various parameters such as HVAC operating mode, airflow, passenger boarding conditions is performed during the HVAC system's initial operating time(20 minutes). The solar ray tracing model and S2S radiation model are used and validated to simulate an external heat source. Based on this study, an evaluation model which can predict the thermal comfort index for the combination of the above parameters is presented.

Clinical Characteristics of Thermal Injuries Following Free TRAM Flap Breast Reconstruction (확장 광배근 근피판술을 이용한 유방재건술)

  • Park, Jae Hee;Bang, Sa Ik;Kim, Suk Han;Im, So Young;Mun, Goo Hyun;Hyon, Won Sok;Oh, Kap Sung
    • Archives of Plastic Surgery
    • /
    • v.32 no.4
    • /
    • pp.408-415
    • /
    • 2005
  • Following a transverse rectus abdominis musculocutaneous(TRAM) flap breast reconstruction, denervated state of the flap causes the flap skin prone to thermal injury, calling for special attention. During the last 5 years, 69 breast reconstruction with 72 free TRAM flaps, were performed. Four out of thesse 69 patients sustained burn injury. Heat sources were a warm bag(n=2), heating pad(n=1) and warming light (n=1). The thermal injuries occured from 2 days to 3 months following the reconstruction. Three patients healed with conservative treatment, but one patient required debridement and skin graft. Initially 3 out of 4 patients with the burn had shown superficial 2nd degree burn with small blebs or bullae. However all 4 patients healed with scars. Mechanism of burn injuries of the denervated flap are known to be resulting from; 1) loss of behavioral protection due to denervation of flap with flap elevation and transfer, 2) loss of autonomic thermoregulatory control with heat dissipation on skin flap vasculature contributing to susceptibility of burn injury. 3) changes of immunologic and normal inflammatory response increasing thromboxane, and a fall in substance P & NGF (nerve growth factor). Including the abdominal flap donor site, sensory recovery of the reconstructed breast varies individually from 6 month even to 5 years postoperatively. During this period, wound healing is delayed, resulting in easier scarring compared to that observed in the sensate skin. Patients should be carefully informed and warned of possible burn injuries and taught to avoid exposure to heat source at least until 3 years postoperatively.

Clinical Characteristics of Thermal Injuries Following Free TRAM Flap Breast Reconstruction (횡복직근 유리피판술로 유방재건 후 발생한 화상의 임상적 특성)

  • Lee, Paik Kwon;Bae, Joon Sung;Ahn, Sang Tae;Oh, Deuk Young;Rhie, Jong Won;Han, Ki Taik
    • Archives of Plastic Surgery
    • /
    • v.32 no.4
    • /
    • pp.403-407
    • /
    • 2005
  • Following a transverse rectus abdominis musculocutaneous(TRAM) flap breast reconstruction, denervated state of the flap causes the flap skin prone to thermal injury, calling for special attention. During the last 5 years, 69 breast reconstruction with 72 free TRAM flaps, were performed. Four out of thesse 69 patients sustained burn injury. Heat sources were a warm bag(n=2), heating pad(n=1) and warming light (n=1). The thermal injuries occured from 2 days to 3 months following the reconstruction. Three patients healed with conservative treatment, but one patient required debridement and skin graft. Initially 3 out of 4 patients with the burn had shown superficial 2nd degree burn with small blebs or bullae. However all 4 patients healed with scars. Mechanism of burn injuries of the denervated flap are known to be resulting from; 1) loss of behavioral protection due to denervation of flap with flap elevation and transfer, 2) loss of autonomic thermoregulatory control with heat dissipation on skin flap vasculature contributing to susceptibility of burn injury. 3) changes of immunologic and normal inflammatory response increasing thromboxane, and a fall in substance P & NGF (nerve growth factor). Including the abdominal flap donor site, sensory recovery of the reconstructed breast varies individually from 6 month even to 5 years postoperatively. During this period, wound healing is delayed, resulting in easier scarring compared to that observed in the sensate skin. Patients should be carefully informed and warned of possible burn injuries and taught to avoid exposure to heat source at least until 3 years postoperatively.

A Global Simulation of SiH4/H2 Discharge in a Planar-type Inductively Coupled Plasma Source (평판형 유도결합 플라즈마 장치의 SiH4/H2 방전에 대한 공간 평균 전산모사)

  • Lee, Won-Gi;Kwon, Deuk-Chul;Yoon, Nam-Sik
    • Journal of the Korean Vacuum Society
    • /
    • v.18 no.6
    • /
    • pp.426-434
    • /
    • 2009
  • A global simulation of $SiH_4/H_2$ discharge is conducted in a planar-type inductively coupled plasma (ICP) discharge. We numerically solve a set of spatially averaged fluid equations for electrons, positive ions, negative ions, neutrals, and radicals. Absorbed power by electrons is determined by an analytic electron heating theory including the anomalous skin effect. Also, we investigate functional dependence of various discharge quantities such as the densities of various species and the temperature of electron on external controllable parameters such as ratio between $SiH_4$ and $H_2$, power and pressure.

Palm-Size-Integrated Microwave Power Module at 1.35-GHz for an Atmospheric Pressure Plasma for biomedical applications

  • Myung, C.W.;Kwon, H.C.;Kim, H.Y.;Won, I.H.;Kang, S.K.;Lee, J.K.
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.02a
    • /
    • pp.498-498
    • /
    • 2013
  • Atmospheric Pressure Plasmas have pioneered a new field of plasma for biomedical application bridging plasma physics and biology. Biological and medical applications of plasmas have attracted considerable attention due to promising applications in medicine such as electro-surgery, dentistry, skin care and sterilization of heat-sensitive medical instruments [1]. Traditional approaches using electronic devices have limits in heating, high voltage shock, and high current shock for patients. It is a great demand for plasma medical industrial acceptance that the plasma generation device should be compact, inexpensive, and safe for patients. Microwave-excited micro-plasma has the highest feasibility compared with other types of plasma sources since it has the advantages of low power, low voltage, safety from high-voltage shock, electromagnetic compatibility, and long lifetime due to the low energy of striking ions [2]. Recent experiment [2] shows three-log reduction within 180-s treatment of S. mutans with a low-power palm-size microwave power module for biomedical application. Experiments using microwave plasma are discussed. This low-power palm-size microwave power module board includes a power amplifier (PA) chip, a phase locked loop (PLL) chip, and an impedance matching network. As it has been a success, more compact-size module is needed for the portability of microwave devices and for the various medical applications of microwave plasma source. For the plasma generator, a 1.35-GHz coaxial transmission line resonator (CTLR) [3] is used. The way of reducing the size and enhancing the performances of the module is examined.

  • PDF

Sources of the High-Latitude Thermospheric Neutral Mass Density Variations

  • Kwak, Young-Sil;Richmond, Arthur;Deng, Yue;Ahn, Byung-Ho;Cho, Kyung-Suk
    • Journal of Astronomy and Space Sciences
    • /
    • v.27 no.4
    • /
    • pp.329-335
    • /
    • 2010
  • We investigate the sources of the variation of the high-latitude thermospheric neutral mass density depending on the interplanetary magnetic field (IMF) conditions. For this purpose, we have carried out the National Center for Atmospheric Research Thermosphere-Ionosphere Electrodynamics General Circulation Model (NCAR-TIEGCM) simulations for various IMF conditions under summer condition in the southern hemisphere. The NCAR-TIEGCM is combined with a new empirical model that provides a forcing to the thermosphere in high latitudes. The difference of the high-latitude thermospheric neutral mass density (subtraction of the values for zero IMF condition from the values for non-zero IMF conditions) shows a dependence on the IMF condition: For negative $B_y$ condition, there are significantly enhanced difference densities in the dusk sector and around midnight. Under the positive-$B_y$ condition, there is a decrease in the early morning hours including the dawn side poleward of $-70^{\circ}$. For negative $B_z$, the difference of the thermospheric densities shows a strong enhancement in the cusp region and around midnight, but decreases in the dawn sector. In the dusk sector, those values are relatively larger than those in the dawn sector. The density difference under positive-$B_z$ condition shows decreases generally. The density difference is more significant under negative-$B_z$ condition than under positive-$B_z$ condition. The dependence of the density difference on the IMF conditions in high latitudes, especially, in the dawn and dusk sectors can be explained by the effect of thermospheric winds that are associated with the ionospheric convection and vary following the direction of the IMF. In auroral and cusp regions, heating of thermosphere by ionospheric currents and/or auroral particle precipitation can be also the source of the dependence of the density difference on the IMF conditions.

Development of Analysis Model for High-Performance Heat Pump (고성능 히트펌프 해석모델 개발 연구)

  • Yim, Sang-Sik;Kim, Ki-Bum;Park, Sung-Young
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.14 no.12
    • /
    • pp.6053-6059
    • /
    • 2013
  • Heat pumps have attracted considerable attention as a green energy system because they use renewable energy, such as geothermal, solar energy and waste heat, and can have a low electricity consumption rate compared to other conventional electric heating system. Many studies of high efficient heat pump system design was performed previously,but it is not easy to find any an analytical model that consists of components (e.g. compressor, heat exchangers, and expansion valve), not only having an interrelation and interconnection each other but also being flexible to any change in geometry and operating parameters. In this study, a computational model was developed for a heat pump with warm air as a heat source using the one-dimensional modeling software, AMESim. In combination with an independently-developed analytical model for a scroll compressor, the heat pump model can simulate the physical characteristics and actual behavior of the heat pump precisely. In addition, the reliability of the model was improved by verifying the simulation results using experimental data. The simulation data fell into the 10% error range compared with the experimental data. The heat pump model can be used for system optimization studies of product development and applied to other applications in a range of industrial field.

A study on Optimal Design for the Inductance and Coreloss of Plate Type Induction Heater for Electric Vehicle (전기자동차용 판형 인덕션 히터의 인덕턴스 및 철손 최적설계 연구)

  • Kang, Jun-Kyu;Jo, Byoung-Wook;Kim, Ki-Chan
    • The Journal of the Korea Contents Association
    • /
    • v.18 no.10
    • /
    • pp.425-430
    • /
    • 2018
  • The battery system of an electric vehicle suffers from the problem the battery output and the service life decrease at low temperature. A Positive Temperature Coefficient(PTC) heater is used for maintaining room temperature but is heavy due to a complicated insulation structure. The larger the weight is, the lower the fuel economy of the electric vehicle is. On the other hand a induction heater have a simple insulation structure, which is effective in weight reduction and has a rapid temperature rise. The induction heater consists of an LC resonance circuit. The larger the capacitance is, the higher the price and weight is. Therefore, the inductance should be increased to reduce the capacitance. Also, the main heat source of the induction heater is coreloss. So, it is important to optimize inductance and coreloss in terms of electromagnetic field design. In this paper, the inductance and the coreloss according to the change of the induction heater structure were optimized through the Taguchi method and Finite Element Method(FEM) simulation.

LFG Utilization in Hong Kong (Case study of the Shuen Wan and Urban Landfills)

  • Lloyd, Bryce;Chan, Louis;Nardelli, Ray;Sullivan, Kevin
    • Proceedings of the Korean Institute of Resources Recycling Conference
    • /
    • 2001.05b
    • /
    • pp.85-91
    • /
    • 2001
  • This paper provides a case study of landfill gas (LFG) utilization fer direct use as process fuel, and for electrical power generation at restored landfills in the Hong Kong Special Administrative Region of China (HKSAR). The paper specifically covers the LFG utilization schemes, which are required under landfill restoration contracts at the Shuen Wan and Urban Landfills. These contracts provide for the restoration and aftercare of six landfills, and are administered by the Environmental Protection Department (EPD) of the Hong Kong Government. The LFG utilization scheme at the Shuen Wan Landfill incorporates the direct use of LFG by compressing and dehumidifying the LFG prior to conveyance through a 1.6-kilometer (1-mile) pipeline. The pipeline provides an alternate fuel source to naphtha during process heating for gas production at the Tai Po Gas Production Plant of the Hong Kong and China Gas Limited (HKCC). The LFG utilization scheme at the Jordan Valley Landfill (one of the Urban Landfills) beneficially uses the LFG as fuel for electrical power generation with reciprocating internal combustion engines. The LFG is compressed, cooled, and filtered prior to delivery to two engine/generator sets. This system provides power to operate the leachate pre-treatment plant, which processes leachate from all of the Urban Landfill sites. The case study will examine the technical and non-technical considerations, including harriers, for developing, designing and implementing the LFG utilization projects in Hong Kong. Specific regulatory considerations and external governmental agency approvals are discussed, including the requirement to register as a gas-producing utility. While the paper focuses on LFG utilization applications in Hong Kong, many of the considerations discussed are also applicable to development of LFG utilization in other regions of Asia.

  • PDF

A Study on Analysis of Energy Consumption of a High School Facilities in Korea (전국 고등학교 시설의 에너지 사용실태 분석 연구)

  • Yoon, Jong-Ho;Shin, U-Cheul;Cho, Jin-Il;Kim, Hyo-Jung;Lee, Chul-Sung
    • Journal of the Korean Solar Energy Society
    • /
    • v.30 no.4
    • /
    • pp.55-62
    • /
    • 2010
  • The purpose of this study is to present various analysis result of energy consumption that is a statistical analysis of high school facilities in Korea for setting the goal of energy saving. This study enforced analysis after it provided used energy consumption for the year 2008 and general in formation from 2202 high school facilities in 16 cities in South Korea by the relevant agency. Consequently, it represents that the average energy consumption of electric power was 428.7MWh(65.7%), gas consumption for heating was 129.5MWh(19.8%), oil consumption was 84.6MWh(13.0%), district energy was 10.0MWh(1.5%) in nation after changing as unit 'kWh' only for comparison with every energy source. This result describes that consumption of electric power was large greatly and it reflects the expectation that it will climb the demand regarding this energy in the future. In additionally, it analyzed average energy consumption with $98.3kWh/m^2$ by the unit area of air-conditioning and the district which has large energy consumption was Gyeonggi-do with $115.9kWh/m^2$. Furthermore, it described the average energy consumption of $60.8kWh/m^2$ by the unit area of floor area and the average energy consumption of a student analyzed with 1157.0kWh.