• 제목/요약/키워드: Heating pipe

검색결과 344건 처리시간 0.162초

지역난방 증기 터빈 내 조속기 밸브 Inlet pipe 파손 원인 분석 (Failure Analysis of an Inlet Pipe of a Governor Valve in a Steam Turbine of a District Heating System)

  • 채호병;김우철;김희산;김정구;이수열
    • Corrosion Science and Technology
    • /
    • 제21권1호
    • /
    • pp.62-67
    • /
    • 2022
  • The objective of this study was to perform failure analysis of an inlet pipe located in a governor valve of a steam turbine in a district heating system. During the operation, the temperature of the governor valve was increased to as high as ~500 ℃, which induced thermal expansion of the inlet pipe along both axial and radial directions. While the inlet pipe did not have contact with the valve seat, the side plane of the upside was constrained by the casing part, which led the inlet pipe to experience stress field in the form of fatigue and creep. The primary crack was initiated at about 30 mm below the top where the complex stress field was anticipated. These results suggest that the main failure mechanism is a combination of thermal fatigue and creep during the operation supported by the observation of apparent beach marks on the fracture surface and pores near the cracks, respectively.

지역난방수 공급관 에어벤트 부식 파손 분석 (Corrosion Failure Analysis of Air Vents Installed at Heat Transport Pipe in District Heating System)

  • 이형준;채호병;조정민;김우철;정준철;김희산;김정구;이수열
    • Corrosion Science and Technology
    • /
    • 제19권4호
    • /
    • pp.189-195
    • /
    • 2020
  • Two air vents situated on a heat transport pipe in district heating system were exposed to the same environment for 10 years. However, one air vent was more corroded than the other. It also had a hole on the top of the front-end pipe. Comparative analysis was performed for these air vents to identify the cause of corrosion and establish countermeasures. Through experimental observation of the damaged part and analyses of powders sampled from air vents, it was found that corrosion was initiated at the top of the front-end pipe. It then spread to the bottom. Energy dispersive X-ray spectroscopy results showed that potassium and chlorine were measured from the corroded product in the damaged air vent derived from rainwater and insulation, respectively. The temperature of the damaged air vent was maintained at 75 ~ 120 ℃ by heating water. Rainwater-soaked insulation around the front-end pipe had been hydrolyzed. Therefore, the damaged air vent was exposed to an environment in which corrosion under insulation could be facilitated. In addition, ion chromatography and inductively coupled plasma measurements indicated that the matrix of the damaged front-end pipe contained a higher manganese content which might have promoted corrosion under insulation.

진동형 히트파이프를 이용한 바닥 난방패널 개발에 관한 연구 (An experimental study on floor heating panel using a pulsating heat pipe)

  • 임석진;이성호;김정훈;김종수
    • 대한설비공학회:학술대회논문집
    • /
    • 대한설비공학회 2006년도 하계학술발표대회 논문집
    • /
    • pp.352-356
    • /
    • 2006
  • As a basic study to develop heating panel, the purpose of this study was to know possibility as a floor heating panel. We investigated working conditions and performance of pulsating heat pipe. Tests were conducted under the next conditions; Working fluid were R-22 and R-134a, charging ratio 40% and 50%, temperature of inlet water $60^{\circ}C$ and $70^{\circ}C$, flow rates $1{\sim}3kg/min$. The experimental results indicate that the pulsating heat pipe charged 50% showed better performance than 40%, R-22 is more suited to the working fluid than R-134a, and it has a possibility which can be applied to floor heating panel using a pulsating heat pipe.

  • PDF

지역난방배관의 누수감지 신뢰성 향상에 관한 연구 (A Study on the Improvement of Water-Leakage Detection Reliability in Local Heating System)

  • 신춘식;안영주;변기식
    • 한국안전학회지
    • /
    • 제14권1호
    • /
    • pp.66-72
    • /
    • 1999
  • Local heating transportation pipe has sensor and return lines to detect water-leakage. There are impulse and resistance comparison measurement types for a water-leakage detection. The impulse type shows large detection error within a measurement range. Since the resistance comparison type can find a comparative accurate single water-leakage point in the measurement range of heating pipe, it has been used to detect water-leakages these days. However if the multi water-leakages are happened in the measurement range of transportation pipe. the resistance comparison type shows a detection error point by the parallel resistance between a detection sensor line and ground. But the detection error will be minimized by the divided transportation pipe loops. In this research, it suggests the design of remote controlled detection system which can divide a large pipe loop and a possible single water-leakage measurement process in each divided loops.

  • PDF

열원의 위치에 따른 평판형 히트파이프의 열적 성능 (Thermal Performance of Flat-strip Heat Pipe with Various Heat Source Locations)

  • 박수용;부준홍
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2004년도 춘계학술대회
    • /
    • pp.1406-1411
    • /
    • 2004
  • A series of experiments was conducted to examine characteristics of a grooved flat-strip heat pipe having multiple heat sources. The inner grooves of the heat pipe have the aspect ratio of 1 to $2.5(0.42{\times}1.05$ mm) whose pitch was 0.6 mm. Four block heaters ($10{\times}20$ mm) were placed in the evaporator section at intervals of 20 mm and six different heating modes were tested. The maximum surface heat flux of 80 $W/cm^2$ was achieved while the operating temperature was kept below $100^{\circ}C$, In the nearest heating mode (from the condenser location), the heat pipe exhibited more stable temperature distribution than the far heating mode where the heaters is located furthest from the condenser.

  • PDF

저온온수 모세유관 바닥복사 난방시스템의 성능에 관한 실험적 연구 (Experimental Study on a Low-Temperature Hot Water Capillary Radiant Floor Heating System)

  • 조진균;박병용;이용준;정원호
    • 설비공학논문집
    • /
    • 제30권2호
    • /
    • pp.68-82
    • /
    • 2018
  • Radiant floor heating systems with capillary tubes are energy saving systems in which hot water is circulated into capillary tube with a small diameter. In this study, the heating performance of capillary tube system is investigated in an experimental study and a simulation model. The results of the study showed that, the capillary tube radiant floor heating system maintains a more stable floor surface temperature in comparison a PB pipe system. In terms of energy consumption, the capillary tube radiant floor heating system proved to be more efficient than the PB pipe heating system at $40^{\circ}C$ of low temperature hot water supply. The difference between water temperature and room temperature can be held low for heating which saves energy. Low temperature radiant floor heating system with capillary tubes have significant advantages such as health improvement, low energy cost, optimum use of heat source(boiler) and higher operational efficiency.

폐용제 회수용 이중관형 열교환기 특성 해석 (Analysis of a Double Pipe Heat Exchanger for Waste Solvent Recovery)

  • 구재현;이재근
    • 자원리싸이클링
    • /
    • 제9권3호
    • /
    • pp.13-21
    • /
    • 2000
  • 본 연구는 폐용제를 가열, 증발 및 음축과정을 거쳐 용제를 회수하는 시스템의 열교환기 해석에 관한 것으로, 고온 열매체유로 가열되는 이중관형 열교환기를 사용하여 용제 증발과정의 열전달 특성을 분석하고 용제유량과 가열온도에 따라 물, 벤젠 및 알칼벤젠의 증발을 위해 요구되는 전열면적을 분석하였다. 폐용제 회수장치는 용제 공급펌프 이중관형 열교환기, 진공 스프레이 챕버 및 응축기동으로 구성되며, 이중관형 열교환기는 용제액을 열적 포화온도를 가열시키는 구간과 포화된 용제액을 증발시키는 구간으로 구성된다. 관 내 용제의 증발을 위한 전열면적을 열평형 모델링에 의해 예측하였고, 이중관형 열교화기의 관 내 온도분포 측정을 통해 이론값과 비교 분석하였다. 용제유량 0.1~0.51l/mm 및 가열온도 130~$260^{\circ}C$의 범위에서 용제유향 증가 및 가열온도 감속에 따라 단위전열면적당 열전달양이 감소하기 때문에 용제 증발을 위한 전열면적은 증가하였다. 관 내 용제 증발을 위한 전열면적의 이론적 분석결과는 측정값과 일치하였으며, 이중관형 열교환기를 사용한 폐용제의 증발과정을 통해 용제를 회수하는 기술에 적용이 가능하다.

  • PDF

지열교환기의 배관자재에 따른 난방효율 분석 (Heating Efficiency of the Underground Heat Exchanger by Different Pipe Materials)

  • 오인환;이준학;정우철
    • 한국축산시설환경학회지
    • /
    • 제4권2호
    • /
    • pp.127-136
    • /
    • 1998
  • To use the earth heat for the livestock housing, an underground heat exchanger is developed and pipes are layed in the depth of 2.5m under the ground. The pipes have two different kinds of diameter (200mm, 100mm) and materials (PE, PVC). The results of heating effect in winter and spring are following. The temperature in different soil depth varies from 5$^{\circ}C$ by 1.5m depth, to 9$^{\circ}C$ by 3.5m. So it should be better to have the depth greater than 2.5m. The difference of air temperature between the inside and outside pipe was 9.9 Kelvin(K) with 200mm diameter and 13.4K with the 100mm diameter with the same material in winter. By the lower outside temperature from -7.2$^{\circ}C$, it could keep the air temperature above 6$^{\circ}C$ through the 100mm diameter pipe. The heating performance was 593 W with 200mm diameter, 118W with 100mm diameter (PE), and 115W with 100m diameter (PVC), respectively. As the outside temperature varies from -1.5$^{\circ}C$ to 18.6$^{\circ}C$ in early spring, the air temperature through the pipes show 4∼8$^{\circ}C$. While the difference between maximum and minimum outside temperature is 14K, the one through the pipes could be reduced by 2K. Pipes with small diameter can more reduce the difference than the pipe with larger diameter.

  • PDF

전자제어 장치를 이용한 세라믹 파이프의 온수제어기 개발 (A Controller Development of Water Heating in a Ceramic Pipe Using Electronics Control System)

  • 이정석
    • 한국전자통신학회논문지
    • /
    • 제6권5호
    • /
    • pp.717-722
    • /
    • 2011
  • 본 논문은 원통형 세라믹관에서 온수를 순간적으로 가열하여 설정된 온도 및 수량으로 제어하고자 전자 제어기를 개발하였다. 순간온수기의 구조는 유입되는 온수가 원통형 세라믹 히터를 통하여 열량을 공급하여 온도를 제어하고자 설계하였고, 또한 수량센서와 임펠러를 이용한 수량을 제어하는 전자 제어기를 설계하였다. 순간온수의 제어방법은 유입되는 유량에 열량을 공급하는 원통형 세라믹 히터의 수학적인 모델링을 수립하여 제어기 적용하였고, 이에 대한 실험결과는 설정온도에 따라 제어가 잘 적용되어, 효율적이고 실용성 결과를 보였다. 따라서 원통형 세라믹 순간온수기는 향후 실용제품에 적용할 수 있는 제품구조와 제어 방법을 제시하였다.

Proposal of residual stress mitigation in nuclear safety-related austenitic stainless steel TP304 pipe bended by local induction heating process via elastic-plastic finite element analysis

  • Kim, Jong-Sung;Kim, Kyoung-Soo;Oh, Young-Jin;Oh, Chang-Young
    • Nuclear Engineering and Technology
    • /
    • 제51권5호
    • /
    • pp.1451-1469
    • /
    • 2019
  • This paper proposes a residual stress mitigation of a nuclear safety-related austenitic stainless steel TP304 pipe bended by local induction heating process via performing elastic-plastic finite element analysis. Residual stress distributions of the pipe bend were calculated by performing finite element analysis. Validity of the finite element analysis procedure was verified via comparing with temperature histories measured by using thermocouples, ultrasonic thickness measurement results, and residual stress measurement results by a hole-drilling method. Parametric finite element stress analysis was performed to investigate effects of the process and geometric shape variables on the residual stresses on inner surfaces of the pipe by applying the verified procedure. As a result of the parametric analysis, it was found that it is difficult to considerably reduce the inner surface residual stresses by changing the existing process and geometric shape variables. So, in order to mitigate the residual stresses, effect of an additional process such as cooling after the bending on the residual stresses was investigated. Finally, it was identified that the additional heating after the bending can significantly reduce the residual stresses while other variables have insignificant effect.