• Title/Summary/Keyword: Heating methods

Search Result 1,007, Processing Time 0.027 seconds

The Two Cases Report of Bee Venom Injection on Patient with Low Back Pain Maintaining after Heating-Conduction Acupuncture Therapy (전열침 시술에 호전되지 않는 요통환자에 대한 봉독약침 치료 증례보고 2례)

  • Yeon, Chang-Ho;Park, Hyun-Gun;Yi, Woon-Sup;Kim, Jong-Yeon;Chung, Seok-Hee
    • The Journal of Churna Manual Medicine for Spine and Nerves
    • /
    • v.7 no.2
    • /
    • pp.75-81
    • /
    • 2012
  • Objectives : According to previous reports, heating-conduction acupuncture treatment is very effective for sprain and strain of ligament. But there was no report about pain aggravation by heating-conduction acupuncture and relief from bee venom injection. In this article, we report two cases of pain aggravation by heating-conduction acupuncture treatment and relief from bee venom injection. Methods : We used heating-conduction acupuncture treatment on possible sprain of sacroiliac ligament diagnosed by physical examination. Outcomes were measured by Visual Analogue Scale(VAS), Range of Motion(ROM) and Belt test, Goldthwait test. Results : The patient has shown an aggravation on pain and ROM. And after we use subcutaneous bee venom injection, pain has relieved and ROM improved. Belt test, Goldthwait test also changed from positive to negative. Conclusions : In this report, we assured the effect of Bee venom injection. Further well-designed, controlled studies and more cases are needed to differentiate the indication of heating-conduction acupuncture and bee venom injection.

  • PDF

Effects of Electromagnetic Heating on Quick Freezing

  • Kim, Jinse;Park, Jong Woo;Park, Seokho;Choi, Dong Soo;Choi, Seung Ryul;Kim, Yong Hoon;Lee, Soo Jang;Yoo, Seon Mi;Han, Gui Jeung
    • Journal of Biosystems Engineering
    • /
    • v.40 no.3
    • /
    • pp.271-276
    • /
    • 2015
  • Purpose: Quick freezing is widely used in commercial food storage. Well-known freezing techniques such as individual quick freezing require a low-temperature coolant and small cuts for the heat-transfer efficiency. However, the freezing method for bulk food resembles techniques used in the 1970s. In this study, electromagnetic (EM) heating was applied to improve the quick freezing of bulk food. Methods: During freezing, the surface of food can be rapidly cooled by an outside coolant, but the inner parts of the food cool slowly owing to the latent heat from the phase change. EM waves can directly heat the inner parts of food to prevent it from freezing until the outer parts finish their phase change and are cooled rapidly. The center temperature of garlic cloves was probed with optical thermo sensors while liquid nitrogen (LN) was sprayed. Results: When EM heating was applied, the center cooling time of the garlic cloves from freezing until $-10^{\circ}C$ was 48 s, which was approximately half the value of 85 s obtained without EM heating. For the white radish cubes, the center cooling time was also improved, from 288 to 132 s. The samples frozen by LN spray with EM heating had a closer hardness to the unfrozen samples than the samples frozen by LN only. Conclusions: The EM heating during quick freezing functions to maintain the hardness of fresh food by reducing the freezing time from 0 to $-10^{\circ}C$.

Electric Fan Heater Design for Eco-Energy Saving (친환경 에너지 절감형 전기온풍기 기구설계)

  • Sul, Yong-Tae
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.4
    • /
    • pp.474-479
    • /
    • 2016
  • As the Eco-energy is recently required, electrical energy is fast increased. Several induction heating methods are attractive for Eco-energy and energy saving. In this paper, electrical fan heater was designed and developed with new concept for energy saving by electromagnetic induction heating. Proposed system was composed of three module, blast part, induction heating part and power transformation part. Induction heating method was adapted for heating and the resonant inverter was used for increasing of the power transformation efficiency. Full-bridge resonant inverter was adopted to resonant inverter. This system was composed of induction heating part made with metal(SUS 40 series), and power transformation part made with rectifier module, filter module and resonant inverter. From these results, the proposed new electric heater could be saved the energy from faster increasing the temperature compared to commercial gas and other electric heater. This electrical fan heater is possible to be used in field of home, commercial and agricultural area for eco-energy saving heater.

Characteristics of Mechanical Properties and Micro Structure according to High-Frequency Induction Heating Conditions in Roll Forming Process of a Sill Side Part (실사이드 부품의 롤포밍공정에서 고주파유도가열 부가조건에 따른 기계적 특성 및 미세조직 평가)

  • Kim, Kun-Young;Choy, Lee-Jon;Shin, Hyun-Il;Cho, Jun-Haeng;Lee, Chang-Hoon;Kang, Myung Chang
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.16 no.6
    • /
    • pp.87-94
    • /
    • 2017
  • Hot stamping processes are possible for tensile strength 1.4 GPa but the strength reduction is appeared from the cooling performance unbalance. And the strength of roll forming process is below than that of hot stamping process owing to using the steel which is lower strength of boron steel. In this study, We provide roll forming process asssisted high-frequency induction heating to solve the problem of conventional one. The experiments were carried out at under various sill side part conditions: high-frequency induction heating conditions of 15, 18, 21, 24, 27 and 30 kW. The high-frequency induction heating temperature was checked with Infrared camera and the sill side parts of mechanical properties and microstructure were measured. The heating temperature of high frequency induction was measured to max $850^{\circ}C$ under the coil power of 30 kW. The tensile strength was 1.5 GPa and hardness was 490 Hv. The martensite structure was discovered under coil power of 30 kW. The weight of steel material sill side having thickness 1.5 mm and the boron steel sill side having thickness 1.2 mm were compared to weight effect. The boron steel sill side reduced 11.5% compared to steel. Consequently, manufacturing process of 1.5 giga-grade's sill side part was successfully realized by the roll forming assisted high-frequency induction heating methods.

Effect of Heating Treatment on the Cooking Loss and Heavy Metal Residues of Porcine Variety Viscera (열처리에 의한 돈 내장근의 중량손실 및 미량 중금속 잔류에 미치는 영향)

  • 양철영
    • The Korean Journal of Food And Nutrition
    • /
    • v.7 no.4
    • /
    • pp.297-306
    • /
    • 1994
  • This experiment was carried out to investigate the healing loss and the heavy metal residues such as copper, zinc, manganese, cadmium and lead In porcine visceras by inductively coupled argon plasma spectrometer(ICP), and to probe changes when porcine visceras were boiling In water treatment(BWT), heating in autoclave treatment (HAT) and heating In oil treatment (HOT) . The range of heating loss on porcine viscera were BWT(23.11∼34.53%) , HAT(18.48∼28.00%) and HOT(14.20∼25.22%)and the heart tissue were higher and liver were lower than those of the other tissues. The total value of heavy metal residues in large intestine, small intestine, heart, kidney, liver and stomach tissue were 11.298${\pm}$5.302 ppm, 27.825${\pm}$8. 177 ppm, 16.756${\pm}$6.334 ppm 21.107${\pm}$6.057 ppm, 25.369 ${\pm}$ 10.164 ppm and 12.611 ${\pm}$5.513 ppm, respectively. Heavy metal residues in porcine visceras tended to decrease according to heating methods and the variety viscera, and the change of total heavy metal residues on BWT, HAT and HOT were 4.16∼32.57%, 12.01∼28.09% and 9.60∼25.76%, respectively. The decrease of lead element of mean value were 21.76% and copper, zinc, manganese and cadmium element were 18.00∼ 18.16%. The change of heavy metal residues were not significant in the porcine visceras(P>0.05), and the these were significantly correlated among the three heating method(P < 0.05).

  • PDF

Influence of heating rate on the flexural strength of monolithic zirconia

  • Ozturk, Caner;Celik, Ersan
    • The Journal of Advanced Prosthodontics
    • /
    • v.11 no.4
    • /
    • pp.202-208
    • /
    • 2019
  • PURPOSE. Fabrication of zirconia restorations with ideal mechanical properties in a short period is a great challenge for clinicians. The purpose of the study was to investigate the effect of heating rate on the mechanical and microstructural properties of monolithic zirconia. MATERIALS AND METHODS. Forty monolithic zirconia specimens were prepared from presintered monolithic zirconia blanks. All specimens were then assigned to 4 groups according to heating rate as Control, Group $15^{\circ}C$, Group $20^{\circ}C$, and Group $40^{\circ}C$. All groups were sintered according to heating rates with the sintering temperature of $1500^{\circ}C$, a holding time of 90 minutes and natural cooling. The phase composition was examined by XRD analysis, three-point bending test was conducted to examine the flexural strength, and Weibull analysis was conducted to determine weibull modulus and characteristic strength. Average grain sizes were determined by SEM analysis. One-way ANOVA test was performed at a significance level of 0.05. RESULTS. Only tetragonal phase characteristic peaks were determined on the surface of analyzed specimens. Differences among the average grain sizes of the groups were not statistically significant. The results of the three-point bending test revealed no significant differences among the flexural strength of the groups (P>.05). Weibull modulus of groups was ranging from 3.50 to 4.74. The highest and the lowest characteristic strength values were obtained in Group $20^{\circ}C$ and Control Group, respectively. CONCLUSION. Heating rate has no significant effect on the flexural strength of monolithic zirconia. Monolithic zirconia restorations can be produced in shorter sintering periods without affecting the flexural strength by modifying the heating rate.

Synthesis of Zeolite A from Coal Fly Ash (석탄회로부터 제올라이트 A의 합성)

  • Jee, Jeong-Dae;Choi, Ko-Yeol
    • Applied Chemistry for Engineering
    • /
    • v.22 no.2
    • /
    • pp.214-218
    • /
    • 2011
  • Zeolite A was synthesized from coal fly ash by the microwave heating as well as the conventional heating method. The effects of reaction time, the amount of sodium aluminate, and the reaction temperature on the crystallization of zeolite A were investigated. The optimum crystallization time was about 3 to 6 h in the temperature range of $80{\sim}100^{\circ}C$. The amount of sodium aluminate was found to be optimum when the molar ratio $SiO_2/Al_2O_3$ of starting solution was in the range of 0.44 to 1.05 at above $90^{\circ}C$, However, The more amount of sodium aluminate was required to get zeolite A at $80^{\circ}C$. Although the rate of crystallization was slightly faster in the microwave heating than that in the conventional heating, the reaction time need to obtain fully crystallized zeolite A was similar in both methods. Therefore, the influence of the microwave heating was not so large compared with the conventional heating in the synthesis of zeolite A from coal fly ash.

Chemical change of urushiol during heating process of Toxicodendron vernicifluum resin (Urushiol의 화학적 변화를 통한 건칠(乾漆)의 포제법(炮製法) 고찰)

  • Kim, Jung-Hoon;Doh, Eui jeong;Lee, Guemsan
    • The Korea Journal of Herbology
    • /
    • v.35 no.2
    • /
    • pp.1-6
    • /
    • 2020
  • Objectives : Heating process is the traditional processing method that has been applied to reduce the toxicity of dried resin of Toxicodendron vernicifluum (Anacardiacea) used as Geon-chil (乾漆, Lacca Rhois Exsiccata or Toxicodendri Resina). Urushiol, which is found in the plants of Toxicodendron genus, is a toxic compound that is absorbed into the skin and induces allergic dermatitis by being contacted. Hence, the reduction of urushiol level by heating processing of Geon-chil is crucial method for its medicinal application. Methods : Due to lack of Geon-chil processing-related articles, the articles researching the processing of lacquer (漆), as a coating material, were collected and analyzed to investigate the chemical change of urushiol during heating process. Results : The results demonstrate that the resin which was collected from the sap of T. vernicifluum tree was dried under warm and humid conditions repeatedly. During primary drying process, the laccase, a copper-containing enzyme in the resin, participated in the formation of urushiol polymers and thereafter urushiol-related toxicity could be reduced by making a lacquer harder and more stable. Moreover, heating a lacquer over 200℃ could cause thermo-degradation of urushiol polymers, and vaporized thermally degraded urushiol monomers and their by-products, which were determined using pyrolysis/GC-MS. Conclusions : These results support that heating process being performed over 200 ℃, such as stir-frying (炒) or calcination (煅), reduces the urushiol content in Geon-chil and hence, its medicinal use can be more stable without urushiol-related allergic reactions.

Actual Energy Consumption Analysis of Temperature Control Strategies for Secondary Side Hot Water District Heating System with an Inverter (인버터시스템 적용 지역난방 시스템의 2차측 공급수 온도 제어방안에 따른 에너지사용량 실증 비교)

  • Cho, Sung-Hwan;Hong, Seong-Ki
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.27 no.4
    • /
    • pp.179-186
    • /
    • 2015
  • In this study, the actual energy consumption of the secondary side District Heating System (DHS) with different hot water supply temperature control methods is compared. The two methods are Outdoor Temperature Reset Control and Outdoor Temperature Predictive Control. While Outdoor Temperature Reset Control has been widely used for energy savings of the secondary side system, the results show that the Outdoor Temperature Predictive Control method saves more energy. In general, the Outdoor Temperature Predictive Control method lowers the supply temperature of hot water, and it reduces standby losses and increases the overall heat transfer value of heated spaces due to more flow into the space. During actual energy consumption monitoring, the Outdoor Temperature predictive Control method saves about 6.6% of energy when compared to the Outdoor Temperature Reset Control method. Also, it is found that at partial load condition, such as during daytime, the fluctuation of hot water supply temperature with Outdoor Temperature Reset Control is more severe than that with Outdoor Temperature Predictive Control. Thus, it proves that Outdoor Temperature Predictive Control is more stable even at partial load conditions.

Heat Demand Forecasting for Local District Heating (지역 난방을 위한 열 수요예측)

  • Song, Ki-Burm;Park, Jin-Soo;Kim, Yun-Bae;Jung, Chul-Woo;Park, Chan-Min
    • IE interfaces
    • /
    • v.24 no.4
    • /
    • pp.373-378
    • /
    • 2011
  • High level of accuracy in forecasting heat demand of each district is required for operating and managing the district heating efficiently. Heat demand has a close connection with the demands of the previous days and the temperature, general demand forecasting methods may be used forecast. However, there are some exceptional situations to apply general methods such as the exceptional low demand in weekends or vacation period. We introduce a new method to forecast the heat demand to overcome these situations, using the linearities between the demand and some other factors. Our method uses the temperature and the past 7 days' demands as the factors which determine the future demand. The model consists of daily and hourly models which are multiple linear regression models. Appling these two models to historical data, we confirmed that our method can forecast the heat demand correctly with reasonable errors.