• 제목/요약/키워드: Heating load coefficient

검색결과 67건 처리시간 0.031초

간이잠실(簡易蠶室)의 난방(暖房) 부하특성(負荷特性) 및 보온(保溫)커튼 설치효과(設置効果)에 관(關)한 연구(硏究)(I) -간이잠실(簡易蠶室)의 난방(暖房) 부하계수(負荷係數) 및 최대(最大) 난방부하(暖房負荷)- (Study on Heating Load Characteristics and Thermal Curtain Effects for Simple Silkworm Rearing Houses(I) -Heating Load Coefficient and Maximum Heating Load-)

  • 최광재;이동현;박경규
    • Journal of Biosystems Engineering
    • /
    • 제15권4호
    • /
    • pp.346-354
    • /
    • 1990
  • In order to provide basic references for the design of heating on simple silkworm rearing house, the actual change of heating load coefficient by progress of adult silkworm rearing day from the reared in silkworm rearing house, the heating load coefficient by types of silkworm rearing houses and the heating requirement and the maximum heating load by types of silkworm rearing houses were determined. The results obtained from the study were as follows : 1. The average heating load coefficients of NS, OS and CC type simple silkworm rearing houses were $24.1KJ/m^2-hr-^{\circ}C$, $19.8KJ/m^2-hr-^{\circ}C$, and $10.8KJ/m^2-hr-^{\circ}C$, respectively. 2. The change of heating load coefficient by progress of silkworm rearing day after reared into simple silkworm rearing house could be expressed as Fig. 4. 3. Heating degree-hour for adult silkworm rearing in Suweon district was calculated as $951.6^{\circ}C-hr$ for spring season and $610.5^{\circ}C-hr$ for autumn season. 4. Yearly heating requirement of the NS type was estimated twice more than that of the CC type. Thus, some kinds of reinforced thermal adiabatic facilities is desirable for NS type. 5. The time for maximum heating load was turned out at the 4th instar during the spring season and after the mounting during the autumn season. 6. This study was performed in Suweon district. However, the estimated and analyzed data could be adapted to the major silkworm rearing district if their meteorology data were adjusted.

  • PDF

고주파 유도가열 부하회로의 C.AcD와그 발 (C.A.D. and Characteristics of High Frequency Induction Heating Load Circuit)

  • Ju-Hong Kim;Ki-Hwan Eom
    • 대한전기학회논문지
    • /
    • 제34권4호
    • /
    • pp.153-153
    • /
    • 1985
  • A method of computer aided design (C.A.D.) is proposed to analize a load circuit of a high frequency induction heating. Various formulas are derived from the properity of the heating load, which is useful for the design of heating materials. A load circuit which is designed by the proposed C.A.D. is realized and tested. The experimental results show in good agreement with the theoritical analysies. Especially the result reveal that the power transfer efficiency increases as the Q and coupling coefficient of the work coil increase.

결합계수 해석에 의한 유도가열용 인버터의 공진회로 설계법 (A Resonant Circuit Design of the Inverter for Induction Heating by Analysis of the Coupling Coefficient)

  • 이광직;김주홍
    • 한국조명전기설비학회지:조명전기설비
    • /
    • 제11권6호
    • /
    • pp.90-95
    • /
    • 1997
  • 고주파 유도가열을 위한 인버터의 공진회로 설계에서 인덕턴스 L의 작용과, 출력전달 요소로 사용된 변압기의 결합계수, 그리고 코일을 사용한 가열부하의 결합계수가 공진회로의 출력, 회로의 Q와 공진주파수에 큰 영향을 주고 있음을 등가회로를 도출하여 그 특성을 해석하였다. 또한 변압기를 테브난 등가회로로 구성할 경우, 변압기의 이차측 임피던스를 일차측 임피던스고 환산하면, 권선비 n$^2$에 비례 할 뿐만 아니라 결합계수 $K^2$에도 비례함을 도출하여 결합계수형 테브난 등가회로에 의한 정확성이 큰 인버터 공진회로 설계의 기초방식을 나타냈다.

  • PDF

간척지 설치 온실의 난방부하 특성 분석 (Analysis of Heating Load Characteristics for Greenhouses Constructed in Reclaimed Lands)

  • 남상운;신현호
    • 한국농공학회논문집
    • /
    • 제59권6호
    • /
    • pp.1-8
    • /
    • 2017
  • The purpose of this study was to provide basic data for development of environmental design technology for greenhouses constructed in reclaimed lands. We analyzed the climatic conditions around seven major reclaimed land areas in Korea, which have a plan to install advanced horticultural complexes. The characteristics of heating load through the thermal environment measurement of the greenhouse in Saemangeum were analyzed. The part to be applied to the environmental design of the greenhouses in reclaimed lands were reviewed. The overall heat transfer coefficient of the experimental greenhouse with the aluminum screen and multi-layer thermal curtain averaged $3.79W/m^2^{\circ}C$. It represents a 44 % heat savings rate compared with plastic greenhouses with a single covering, which was significantly lower than that of the common greenhouses with 2-layer thermal curtains. This is because the experimental greenhouse was installed on reclaimed land and wind was stronger than the inland area. Among the total heating load, the transmission heat loss accounted for 96.4~99.9 %, and the infiltration loss and the ground heat exchange were low. Therefore, it is necessary to take countermeasures to minimize the transmission heat loss for greenhouses constructed in reclaimed lands. As the reclaimed land is located on the seaside, the wind is stronger than the inland area, and the fog is frequent. Especially, Saemangeum area has 2.6 times stronger wind speed and 3.4 times longer fog duration than the inland area. In designing the heating systems for greenhouses in reclaimed lands, it is considered that the maximum heating load should be calculated by applying the wind coefficient larger than the inland area. It is reasonable to estimate the operation cost of the heating system by applying the adjustment factor 10 % larger than the average in calculating the seasonal heating load.

창호 에너지소비효율등급제에 따른 공동주택의 열성능 평가 (Energy Performance Evaluation of Apartment Houses According to Window Energy Consumption Efficiency Rating System in Korea)

  • 임희원;김동윤;이수만;안정혁;윤종호;신우철
    • 설비공학논문집
    • /
    • 제30권4호
    • /
    • pp.159-166
    • /
    • 2018
  • The Korean fenestration energy consumption efficiency rating system only considers thermal performance of the heat transfer coefficient (U-value) and airtightness excluding optical characteristics of the solar heat gain coefficient (SHGC). This study analyzed annual heating and cooling energy requirements on the middle floor of apartment by optical and thermal performance of windows to evaluate the suitability of the rating system. One hundred and twenty-eight windows were analyzed using THERM and WINDOW 7.4, and energy simulation for a reference model of an apartment house facing south was performed using TRNSYS 17. The results showed that window performance was the main factor in the heating and cooling load. The heating load of the reference model was 539 kWh to 2,022 kW, and the cooling load was 376 kWh to 1,443 kWh. The coefficient of determination ($R^2$) of the heating and cooling loads driven from the SHGC were 0.7437 and 0.9869, which are more compatible than those from the U-value, 0.0558 and 0.4781. Therefore, it is not reasonable to evaluate the energy performance of windows using only the U-value, and the Korean fenestration energy consumption efficiency rating system requires a new evaluation standard, including SHGC.

창호의 단열성능에 따른 공동주택 냉난방 부하량 변화 (The Change of Heating and Cooling Load according to the Thermal Insulation Performance of Window for an Apartment House)

  • 송수빈;김영탁;윤성환
    • 대한설비공학회:학술대회논문집
    • /
    • 대한설비공학회 2008년도 하계학술발표대회 논문집
    • /
    • pp.853-856
    • /
    • 2008
  • Windows have an great effect on annual building load because windows are the weakest parts of building envelope thermally. To reduce the consumption of building energy, the thermal performance of window has to be improved in first place. Therefore this research aims to make a quantitative analysis of the heating and cooling load according to the window thermal performance using the heat load simulation program. As a result of the simulation, annual heat load is down 38% according to the decrease of U-value of window, 1.00 W/$m^2K$. and annual heat load is up 10% according to the decrease of shading coefficient, 0.20. The annual load of the window with Low-E glass is 15% lower than the window with pair glass.

  • PDF

온돌난방공간(溫突暖房空間)의 내표면(內表面) 복사열전달률(輻射熱傳達率)에 관(關)한 연구(硏究) (Radiation Heat-Transfer Coefficient of the Indoor Surface in Ondol Heating Space)

  • 손장열;안병욱;신용태
    • 대한설비공학회지:설비저널
    • /
    • 제17권5호
    • /
    • pp.598-606
    • /
    • 1988
  • The radiation heat-transfer coefficient is generally used to calculate radiant heat exchange of heating space. The coefficient is evenly adopted in most cases, but it is not correct in actual cases. The purpose of this paper is to grasp the changing aspect of radiation heat-transfer coefficient needed for heating load calculation of radiant heating space. Surface temperatures are measured in an Ondol space, and the coefficients are derived and examined. Gebhart's Absorption Factor Method is used for the calculations of the rates of instantaneous radiant exchange in the room. As the result, it is confirmed that the coefficients are variant according to surface temperatures, and proper coefficients are needed for each of conditions.

  • PDF

해수열원 스크류 히트펌프의 연간 난방운전 성능 모사 (A Simulation Study on the Annual Heating Performance of the Seawater-Source Screw Heat Pump)

  • 백영진;김민성;장기창;이영수;김현주
    • 한국태양에너지학회 논문집
    • /
    • 제32권3호
    • /
    • pp.88-95
    • /
    • 2012
  • In this study, in order to utilize the seawater as a heat source at Gangneung city near the East Sea in Korea, an annual heating performance of a screw heat pump was simulated. For a simulation, the maximum heating capacity of heat pump was assumed at 3.5 MW. An ambient temperature at Gangneung city was calculated from the TMY2 weather data, while the seawater temperature was calculated from the regression equation based on the measurement by the National Fisheries Research and Development Institute of Korea. The heating load was assumed linearly dependent on the ambient temperature, while the maximum heating load was assumed to appear when the ambient temperature is below $-2.4^{\circ}C$, which is the temperature of TAC 2.5% for heating at Gangneung city. A heat pump performance at full-load was calculated from the regression equation, which involves refrigerant's evaporating and condensing temperatures, based on a commercial screw compressor performance map. A heating supply temperature which determines refrigerant's condensing temperature was assumed linearly dependent on the heating load. A performance degradation due to the part-load operation of heat pump was also considered. Simulation results show that an annual heating coefficient of performance ($COP_H$) of a seawater-source screw heat pump is approximately 2.8 and that it is necessary to improve part-load performance to increase an annual performance of the heat pump.

해수열원 스크류 히트펌프의 연간 난방운전 성능 시뮬레이션 (A Simulation Study on the Annual Heating Performance of the Seawater-Source Screw Heat Pump)

  • 백영진;김민성;장기창;강병찬;라호상;김현주
    • 한국태양에너지학회:학술대회논문집
    • /
    • 한국태양에너지학회 2012년도 춘계학술발표대회 논문집
    • /
    • pp.488-493
    • /
    • 2012
  • In this study, in order to utilize the seawater as a heat source at Gangneung city near the East Sea in Korea, an annual heating performance of a screw heat pump was simulated. For a simulation, the maximum heating capacity of heat pump was assumed at 3.5 MW. An ambient temperature at Gangneung city was calculated from the TMY2 weather data, while the seawater temperature was calculated from the regression equation based on the measurement by the National Fisheries Research and Development Institute of Korea. The heating load was assumed linearly dependent on the ambient temperature, while the maximum heating load was assumed to appear when the ambient temperature is below $-2.4^{\circ}C$, which is the temperature of TAC 2.5% for heating at Gangneung city. A heat pump performance at full-load was calculated from the regression equation, which involves refrigerant's evaporating and condensing temperatures, based on a commercial screw compressor performance map. A heating supply temperature which determines refrigerant's condensing temperature was assumed linearly dependent on the heating load. A performance degradation due to the part-load operation of heat pump was also considered. Simulation results show that an annual heating coefficient of performance ($COP_H$) of a seawater-source screw heat pump is approximately 2.8 and that it is necessary to improve part-load performance to increase an annual performance of the heat pump.

  • PDF

창호 구성 요소에 따른 난방에너지 절감율 예측에 관한 연구-공동주택을 중심으로 (Prediction of Heating Energy Saving Rate on the Window Type-Focus on the Apartment House)

  • 김경아;문현준;유기형
    • 한국태양에너지학회 논문집
    • /
    • 제33권6호
    • /
    • pp.54-61
    • /
    • 2013
  • This is study on the glazing performance of the apartment house to predict energy saving rate when the early design stage by calculating heating load. there are various factors of the window type in apartment building to save energy such as window's U-value, SC or SHGC, window wall ration, frame factor, sunshade coefficient and so on. In this study, we analyzed the heating load focused on the U-value, SC and window wall ration using variable heating degree days method for a small and middle size units $59m^2$, $84m^2$, respectively. Each cases were calculated heating load of the real models compared to standard model to predict energy saving rate. From those cases it was drew the conclusion that were window's U-value, SC and window wall ration for the small and middle size units to expect 10% energy saving rate at least.