• Title/Summary/Keyword: Heating experiment

Search Result 869, Processing Time 0.027 seconds

The study to flat-type generate of magnetic field with CW (Continue wave) frequency and AM (Amplitude modulation) frequency

  • Shin, Gi Won;Kang, Chang Ho;Lee, Min Jun;Yang, Sung Jae;Lee, Hyuk Ho;Hong, Hyun Bin;Jo, Tae Hoon;Kwon, Gi Chung
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2015.08a
    • /
    • pp.139.2-139.2
    • /
    • 2015
  • In this study, We applied the magnetic field that has CW frequency and AM frequency to heating magnetic nano powder. For this experiment, We set up the devices flat-type magnetic field generator with CW frequency and AM frequency. We supplied the current to encircling coil by adjusting the power of generating of magnetic field device for AC voltage through Slidacs and using way of LC resonance circuit and SMPS(Switching Mode Power Supply). Above the encircling coil, We covered the circular flat insulator like glass. And we located the well plate containing the magnetic nano powder liquor above the circular flat insulator and exposed the magnetic field to this well plate. Using the flat-type magnetic field generator with CW and AM frequency and the magnetic field measurement sensor(Magnetic pick up coil or Hall sensor), We measured the strength of the magnetic field of circular flat insulator's surface in each position. The temperature of the magnetic nano powder in the well plate was quantitatively measured by the magnetic field strength through the Fluoroptic thermometer.

  • PDF

Formation and Thermal Properties of Amorphous Ti40Cu40Ni10Al10 Alloy by Mechanical Alloying (Mechanical Alloying에 의한 비정질 Ti40Cu40Ni10Al10 합금의 형성 및 열적특성)

  • Kim, Hyun-Goo
    • Journal of Powder Materials
    • /
    • v.16 no.5
    • /
    • pp.363-369
    • /
    • 2009
  • The amorphization process and the thermal properties of amorphous Ti$_{40}$Cu$_{40}$Ni$_{10}$Al$_{10}$ powder during milling by mechanical alloying were examined by X-ray diffractometry (XRD), differential scanning calorimetry (DSC), and transmission electron microscopy (TEM). The chemical composition of the samples was examined by an energy dispersive X-ray spectrometry (EDX) facility attached to the scanning electron microscope (SEM). The as-milled powders showed a broad peak (2$\theta$ = 42.4$^{\circ}$) with crystalline size of about 5.0 nm in the XRD patterns. The entire milling process could be divided into three different stages: agglomeration (0 < t$_m$ $\leq$ 3 h), disintegration (3 h < t$_m$ $\leq$ 20 h), and homogenization (20 h < t$_m$ $\leq$ 40 h) (t$_m$: milling time). In the DSC experiment, the peak temperature T$_p$ and crystallization temperature T$_x$ were 466.9$^{\circ}C$ and 444.3$^{\circ}C$, respectively, and the values of T$_p$, and T$_x$ increased with a heating rate (HR). The activation energies of crystallization for the as-milled powder was 291.5 kJ/mol for T$_p$.

Effects of the EGR and Injection Pressure on the Combustion and Emission Characteristics of DME Commonrail Diesel Engine (DME를 연료로 하는 커먼레일 디젤 엔진의 연소와 배기 특성에 미치는 분사압력과 EGR의 영향)

  • Chung, Jae-Woo;Kang, Jung-Ho;Lee, Sung-Man;Kim, Hyun-Chul;Kang, Woo
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.14 no.4
    • /
    • pp.84-91
    • /
    • 2006
  • In this study, the effect of EGR and fuel injection pressure on the characteristics of combustion and emission performance of the common-rail diesel engine is investigated using DME fuel as a smoke-free alternative fuel. Because the heating value and density of DME fuel are lower than those of diesel fuel, the injection duration of the DME engine is relatively longer than the injection duration of the diesel engine with the same injection pressure. However, the higher injection pressure can shorten the injection duration for the DME engine. Although the smoke level of the DME engine is much lower than that of the diesel engine, the NOx is at a level similar to that of the diesel engine. As a proposed solution for this, the EGR technique is empirically applied to the DME engine. In the experiments, the injection pressure was changed from 200bar to 400bar, and the EGR rate was limited under 40%. With the same injection timing and fuel amount, the experiment results indicated that the increase of injection pressure led to the increase of IMEP while decreasing HC and CO emissions. However, the NOx emission tends to increase as the injection pressure becomes higher. On the other hand, as the EGR rate was increased, NOx emission and A/F were reduced while the HC and CO emissions were increased. Because HC and CO emissions have the critical A/F point where the emissions of HC and CO are rapidly increased, it is proposed that the EGR rate must be limited under the critical EGR rate.

An Experimental Study on Electric Resistivity and Exothermic Property of Electrically Conductive Mortar using Amorphous Graphite (흑연을 혼입한 전기전도 모르타르의 전기저항 및 발열특성에 관한 실험적 연구)

  • Ahn, Hong-JIn;Kim, Sang-Heon;Choi, Soo-Kyung
    • Journal of the Korea Institute of Building Construction
    • /
    • v.16 no.3
    • /
    • pp.247-255
    • /
    • 2016
  • The exothermic property of electrical conductivity concrete would allow the heating system of house or snow melting system of tunnel, road or bridge deck. This study was performed on electric resistance, exothermic property and mechanical property of the mortar with graphite of carbon-based conductive material as a fundamental research for the heat conductive concrete development. As the results of this experiment, the increasement on the amorphous graphite substitution rate was found to decrease in the compressive strength, however, the electric resistance was found to be significantly lower. And, in order to demonstrate the exothermic property, the graphite was found to be included more than 15% of the total mortar volume. When low electric resistance obtained with a certain level of the graphite inclusion, exothermic value and applied voltage has a higher correlation, and the exothermic value and the square of the voltage appeared to be in a proportional relationship.

A Study on the Boiling Heat Transfer of R-113 in a Concentric Annular Tube (환상이중원관에서 R-113의 비등열전달에 관한 연구)

  • Kim, M.H.;Kim, C.H.;Oh, C.;Yoon, S.H.;Kim, K.K.
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.18 no.5
    • /
    • pp.12-23
    • /
    • 1994
  • The two-phase flow is observed in power plants, chemical process plants, and refrigeration systems etc., and it is very important to solve the heat transfer mechanism of a boiler, an automic reactor, a condenser and various types of evaporators. Recently, the problem of two phase heat transfer is braught up in many regions with development of energy saving technique. In flow boiling system it is necessary to store data in each condition because the heat transfer characteristics of flow boiling region vary by the change of flow pattern and the magnetude of heat flux to tube length, and be subtly affected by the flow and heating condition. So basic study for knowing flow pattern in heat transfer region and the relation between heat transfer characteristic and flow condition is desired to accumulate data in wide variety of liquid and flow system in the study of heat transfer of two phase flow. In this study R-113 was selected as working fluid whose properties were programmed by least square method, and experiment was conducted in the region of mass flow $1.628{\times}10^6$~$4.884{\times}10^6$/kg/$m^2$hr with inlet subcooling 10~3$0^{\circ}C$, sustaining test section inlet pressure to 1.5kg$_f$/$cm^2$abs.

  • PDF

Evaluation of Material Properties in Austenite Stainless Steel Sheet with Scanning Acoustic Microscopy (초음파현미경을 이용한 오스테나이트 스테인레스강의 재료특성 평가)

  • Park, Tae-Sung;Kasuga, Yukio;Park, Ik-Keun;Kim, Kyoung-Suk;Miyasaka, Chiaki
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.21 no.2
    • /
    • pp.267-275
    • /
    • 2012
  • Austenite stainless steel 304 has properties of high resistance to corrosion and temperature changes. Therefore, this material is widely used in various of industries. However, when the material is subjected to heating and cooling cycles the forming accuracy, for example, the right angle associated with a sharp bend such as corner is lost. This phenomenon is caused by the reversion of the deformation-induced martensite into austenite when the temperature in increased. This result in misfit of a structure or an assembly, and an increase in residual stress. Hence, it is important to understand this process. In this study, to evaluate the mechanical behavior of the deformation-induced martensite and reversed austenite, a scanning acoustic spectroscope including the capability of obtaining both phase and amplitude of the ultrasonic wave (i.e., the complex V(z) curve method) was used. Then, the velocities of the SAW propagating within the specimens made in different conditions were measured. The experimental differences of the SAW velocities obtained in this experiment were ranging from 2,750 m/s to 2,850 m/s, and the theoretical difference was 3.6% under the assumption that the SAW velocity was 2,800 m/s. The error became smaller as the martensite content was increased. Therefore, the SAW velocity may be a probe to estimate the marternsite content.

The characteristics of gasification for combustible waste

  • Na, Jae-Ik;Park, So-Jin;Kim, Yong-Koo;Lee, Jae-Goo;Kim, Jae-Ho
    • Proceedings of the Korea Society for Energy Engineering kosee Conference
    • /
    • 2002.05a
    • /
    • pp.227-234
    • /
    • 2002
  • With the increasing environmental consideration and stricter regulations, gasification of waste is considered to be more attractive technology than conventional incineration for energy recovery as well as material recycling. The experiment for combustible waste mixed with plastic and cellulosic materials was performed in the fixed bed gasifier to investigate the gasification behavior with the operating conditions. Waste pelletized with a diameter of 2~3cm and 5cm of length was gasified at the temperature range of 1100~145$0^{\circ}C$. It was shown that the composition of H$_2$ was in the range of 30~40% and CO 15~30% depending upon oxygen/waste ratio. Casification of waste due to thermoplastic property from mixed plastic melting and thermal cracking shows a prominent difference from that of coal or coke. It was desirable to maintain the top temperature up to foot to ensure the mass transfer and uniform reaction through the packed bed. As the bed height was increased, the formation of H$_2$ and CO was increased whilst $CO_2$ decreased by the char-$CO_2$ reaction and plastic cracking. From the experimental results, the cold gas efficiency was around 61% and heating values of product gases were in the range of 2800~3200㎉/Nm3.

  • PDF

Investigation of Turbulent Flow Effect in Segmented Arc Heater (아크히터 내부의 난류 효과에 대한 고찰)

  • Lee, Jeong-Il;Kim, Kyu-Hong;Kim, Chong-Am
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.33 no.5
    • /
    • pp.1-8
    • /
    • 2005
  • Flows in segmented arc-heaters have been calculated for prediction of experimental operating condition or for analysis and design of arc-heater itself. Some researchers succeeded in calculating accurately inner flows of a arc-heater, but could not made mathematical models which satisfy various operating conditions for many arc-heaters. this study is forced on turbulence for the generality of mathematical model. Instead of algebraic turbulence models which are frequently used for calculating inner flow of arc-heater, two equation turbulent models are used. Prediction results agree well with experiment data and it was confirmed that $k-\varepsilon$ two equation turbulence model is appropriate for a flow in an arc heater throughout extensive numerical testing.

Herbal Patch Analysis in Korean Patent (국내 한방 패치 특허 현황에 대한 분석연구)

  • Park, Sunju;Woo, Seong-Cheon;Park, Ji-Yeun
    • Journal of Society of Preventive Korean Medicine
    • /
    • v.22 no.1
    • /
    • pp.45-59
    • /
    • 2018
  • Objectives : The purpose of this study is to present trends and contents of herbal Korean Medicine patches by analyzing the herbal patches in Korean patents. Methods : Electronic search for herbal patch patents was conducted in KIPRIS (Korea Intellectual Property Rights Information Service). Korean patents that were registered by January 1, 2018 were selected in study. Patents that were not using herbal medicine or not related to patch were excluded in this study. The applicant, application date, International Patent Classification (IPC), contents and adhesive site of patches, target diseases, model of experiment and extraction methods were analyzed. Results : A total of 17 patents were included in this study. In applicant analysis, 61.5% of applicants were corporations. All IPCs in patents were involved in Section A (Human necessities & Agriculture) and 66.7% of IPCs were A61K (Preparations formedical, dental, ortoiletpurposes). In types of patch, 8 patents were hydrogel patches (47.1%), followed by 3 heating patches (17.6%). Skin related symptoms were the most targeted diseases (52.9%), Human was the most used model in experiments. Solvent extraction and hot water extraction were used frequently, and some patents had no limit for extraction were also existed. Conclusions : The study results will be helpful to diversify formulation of herbal medicine, to expand market scale of patent and to develop new application using Korean medicine. In order to establish sufficient data for utilizing patent technologies, more patent studies providing analyzed patent information are needed.

A Study on the Optimum Reheating Profess of A356 Alloy in Semi-Solid Forming (반용융 성형에서 A356합금의 최적 재가열 과정에 대한 연구)

  • Yoon, Jae-Min;Park, Joon-Hong;Kim, Young-Ho;Choi, Jae-Chan
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.19 no.2
    • /
    • pp.114-125
    • /
    • 2002
  • As semi-solid forging (SSF) is compared with conventional easting such as gravity die-easting and squeeze casting, the product without inner defects can be obtained from semi-solid forming and globular microstructure as well. Generally speaking. SSF consists of reheating, forging, ejecting precesses. In the reheating process, the materials are heated up to the temperature between the solidus and liquidus line at which the materials exists in the form of liquid-solid mixture. The process variables such as reheating time, reheating temperature, reheating holding time, and induction heating power have much effect on the quality of the reheated billets. It is difficult to consider all the variables at the same time when predicting the quality. In this paper, Taguchi method, regression analysis and neural network were applied to analyze the relationship between processing conditions and solid fraction. A356 alloy was used for the present study, and the learning data were extracted by the reheating experiments. Results by neural network were on good agreement with those by experiment. Polynominal regression analysis was formulated by using the test data from neural network. Optimum processing condition was calculated to minimize the grain size, solid fraction standard deviation, otherwise, to maximize the specimen temperature average. In this time, discussion is liven about reheating process of row material and results are presented with regard to accurate process variables for proper solid fraction, specimen temperature and grain size.