• 제목/요약/키워드: Heating distribution pipeline

검색결과 3건 처리시간 0.021초

외기온도 변화에 따른 지역난방 공동주택 다중 열공급제어 알고리즘 개발에 관한 해석적 연구 (A Study on the Development of a Multi-Heat Supply Control Algorithm in a District Heating Apartment Building in Accordance with the Variation of Outdoor Air Temperature)

  • 변재기;윤성호;남기훈;최영돈;신종근
    • 설비공학논문집
    • /
    • 제25권11호
    • /
    • pp.585-594
    • /
    • 2013
  • In this study, we developed a heat supply control algorithm that minimizes the heat loss in the heat distribution pipelines used for supplying heat energy to shared group housing. Controlling the temperature and flow rate of the hot water supplied to the heat exchanger for shared group housing enables us to develop a heat supply control technique that meets the heating load required by each household in a shared apartment building in accordance with changes in the outdoor air temperature, and that minimizes the heat loss occurring in the heat distribution pipeline. A one-year study in 2008 on a 1,473-household D-apartment building in Hwaseong, Gyeonggi-do, South Korea, compared the heat capacity used by each household, as well as the heat capacity supplied to the heat exchanger room of the apartment housing building, to calculate the amount of heat loss in the heat distribution pipeline. The results confirmed that 24.1% of the heat supplied was lost in the piping.

가스냉방의 경제성 분석 (An Economic Analysis of the Natural Gas Air-conditioning)

  • 김봉진;박연홍
    • 산업공학
    • /
    • 제11권1호
    • /
    • pp.207-214
    • /
    • 1998
  • Since the natural gas air-conditioning not only increases the base load of the gas company but also decreases the summer peak load of the electricity company, it is considerded as an efficient demand-side management program. This paper suggests the economic evaluation method of the gas air-conditioning program from the perspectives of the participants, the pipeline gas company, the local distribution company, the electricity company, and the total resources. The absorption type gas air-conditioning/space-heating is selected as a case study to illustrate the economic analysis of the natural gas air-conditioning.

  • PDF

국내 수소 생산, 소비 및 유통 현황 (The Status of Domestic Hydrogen Production, Consumption, and Distribution)

  • 김봉진;김종욱;최상진
    • 한국수소및신에너지학회논문집
    • /
    • 제16권4호
    • /
    • pp.391-399
    • /
    • 2005
  • This paper deals with the survey of domestic hydrogen production, consumption, and distribution. The amount of domestic hydrogen production and consumption has not been identified, and we survey the amount of domestic hydrogen production and consumption by industries. The hydrogen production industries are classified into the oil industry, the petrochemical industry, the chemical industry, and the other industry. In 2004, the amount of domestic hydrogen production was 972,601 ton, which corresponded to 1.9% of the global hydrogen production. The oil industry produced 635,683 ton(65.4%), the petrochemical industry produced 241,970 ton(24.9%), the chemical industry produced 66,250 ton(6.8%), the other industry produced 28,698 ton(2.9%). The hydrogen consumptions of corresponding industries were close to the hydrogen productions of industries except that of the other industry. Most hydrogen was used as non-energy for raw materials and hydrogen additions to the process. Only 122,743 ton(12.6%) of domestic hydrogen was used as energy for heating boilers. In 2004, 47,948 ton of domestic hydrogen was distributed. The market shares of pipeline, tube trailers and cylinders were 84.4% and 15.6%, respectively. The purity of 31,848 ton(66.4%) of the distributed hydrogen was 99.99%, and 16,100 ton(33.6%) was greater than or equal to 99.999%. Besides domestic hydrogen, we also identify the byproduct gases which contain hydrogen. The iron industry produces COG( coke oven gas), BFG(blast furnace gas), and LDG(Lintz Donawitz converter gas) that contain hydrogen. In 2004, byproduct gases of the iron industry contained 355,000 ton of hydrogen.