• 제목/요약/키워드: Heating cycle

검색결과 437건 처리시간 0.033초

해양 온도차발전 시스템의 열역학 사이클에 대한 연구 (A Study on the Thermodynamic Cycle of OTEC system)

  • 김남진;신상호;천원기
    • 한국태양에너지학회 논문집
    • /
    • 제26권2호
    • /
    • pp.9-18
    • /
    • 2006
  • In this paper, the thermodynamic performance of OTEC cycle was examined. Computer simulation programs were developed for simple Rankine cycle, regenerative Rankine cycle, Kalina cycle, open cycle and hybrid cycle. For the simple Rankine cycle, the results show that newly developed fluids such as R410A and R32 that do not cause stratospheric ozone layer depletion perform as well as R22 and ammonia. Also, simple Rankine cycle OTEC power plant can practically generate electricity when the difference in warm and cold sea water inlet temperatures are greater than $14^{\circ}C$. The regenerative Rankine cycle showed a 1.5 to 2% increase in energy efficiency compared to the simple Rankine cycle while the Kalina cycle employing ammonia/water mixture showed a 2-to-3% increase in energy efficiency, and the overall cycle efficiencies of hybrid cycle and open cycle were 3.35% and 4.86%, respectively.

Effects of Gas Injection on the Heating Performance of a Two-Stage Heat Pump Using a Twin Rotary Compressor with Refrigerant Charge Amount

  • Heo, Jae-Hyeok;Jeong, Min-Woo;Jeon, Jong-Ug;Kim, Yong-Chan
    • International Journal of Air-Conditioning and Refrigeration
    • /
    • 제16권3호
    • /
    • pp.77-82
    • /
    • 2008
  • For heat pumps used in a cold region, it is very important to obtain appropriate heating capacity. Several studies using a variable speed compressor and an additional heater have been performed to enhance heating capacity at low ambient temperatures. However, for outdoor temperature conditions below $-15^{\circ}C$, it is still difficult to obtain enough heating capacity above the rated value. In recent studies, the application of gas injection technique into a two-stage heat pump yielded noticeable heating performance improvement at low temperature conditions. In this study, the heating performance of a two-stage gas injection heat pump with a rated capacity of 3.5 kW was measured and analyzed by varying refrigerant charge amount and EEV opening at the standard heating condition. The heating performance of the two-stage gas injection heat pump was compared with that of a two-stage non-injection heat pump. The heating capacity and COP of the two-stage gas injection heat pump were improved by 2-10% at the optimal charging condition over those of the two-stage non-injection heat pump.

유도가열기용 직.병렬 공진 고주파 인버터의 설계 (Design of High Frequency Inverter with Series-parallel Load-Resonant for Induction Heating application)

  • 홍순일;손의식
    • 조명전기설비학회논문지
    • /
    • 제14권6호
    • /
    • pp.12-17
    • /
    • 2000
  • IN induction heating system the high frequency operation allows a rapid response to current fluctuation in the inverter and result in improved welding quality. To work induction heating of nonferrous metals, a welding power supply is need high working frequency and high power. This paper is shown design technique for increasing working frequency in induction heating for welding coppers. A series-parallel resonate inverter consists of H-type bridges, each of whose arms is composed of a combination of two parallel IGBTs. Inverter operating with the fixed frequency is controlled by pulse width modulation (PWM). As switching adapted the Zero-Voltage Switching technique to reduce switching losses the system is high efficiency. The propose inverter has feature which is high efficiency for very wide load variations with a narrow range of duty cycle ratio control and load short circuit capability. Detailed experimental results obtained from a 48[V] output, 500[W] experimental inverter are presented to verify the concept.

  • PDF

가변속 열펌프의 냉매 유량제어에 의한 난방성능 변화에 관한 실험적 연구 (An Experimental Investigation on the Variation of Heating Performance Due to the Refrigerant Flow Control in a Variable-Speed Heat Pump)

  • 김봉훈
    • 설비공학논문집
    • /
    • 제13권8호
    • /
    • pp.746-756
    • /
    • 2001
  • An experimental study was conducted to investigated the effect of refrigerant flow control on the performance of a variable-speed heat pump operating in both cooling and heating mode. For this purpose, cooling and heating capacity, EER and refrigerant mass flow rate corresponding to an electronic valve as well as a capillary tube were measured as functions of compressor speed, length of capillary tube (or valve opening of the electronic valve), refrigerant charge, and outdoor temperature. From the comparison of experimental results, it was found that the performance variation due to the electronic valve opening became significant as the operating conditions(outdoor temperature and compressor speed) deviated from the standard condition at which heating capacity and EER were rated for the indicated capillary tube.

  • PDF

인공신경망 기반 VRF 시스템 제어 (ANN-Based VRF (variable refrigerant flow) system control)

  • 문진우
    • 토지주택연구
    • /
    • 제10권3호
    • /
    • pp.9-16
    • /
    • 2019
  • This study aimed at developing control algorithms for operating a variable refrigerant flow (VRF) heating and cooling system with optimal system parameter set-points. Two artificial neural network (ANN) models, which were respectively designed to predict the heating energy cost and cooling energy amount for upcoming next control cycle, was developed and embedded into the control algorithms. Performance of the algorithms were tested using the computer simulation programs - EnergyPlus, BCVTB, MATLAB in an incorporative manner. The results revealed that the proposed control algorithms remarkably saved the heating energy cost by as much as 7.93% and cooling energy consumption by as much as 28.44%, compared to a conventional control strategy. These findings support that the ANN-based predictive control algorithms showed potential for cost- and energy-effectiveness of VRF heating and cooling systems.

공공도서관에 지열시스템 적용시 경제성에 관한 연구 (A Study on the Economic Analysis of Cooling-Heating System Using Ground Source Heat in a public library)

  • 최창호
    • 한국태양에너지학회 논문집
    • /
    • 제32권1호
    • /
    • pp.56-66
    • /
    • 2012
  • This study evaluated the economic benefits by comparing Cooling-Heating System with the existing system in the public library. The building's annual energy consumption was measured by adding the figures of the absorber chillers, the air conditioners and heaters in the building. The total amount of annual energy consumption was 143.51RT in air-conditioning and 83.66RT in heating. So, We made the capacity of geothermal heat pumps three 50RTs in order to check up this system. In order to estimate each construction and equipment cost and to evaluate economical efficiency, LCC(Life Cycle Cost) method was used and the service life of the building was sixty years. The result of analysis was that the geothermal cooling-heating system was more efficient than the existing system in public library.

초월임계 이산화탄소 사이클의 성능향상에 관한 시뮬레이션 연구 (Simulation Study on the Performance Improvement of a Transcritical Carbon Dioxide Cycle)

  • 조홍현;김용찬;서국정
    • 설비공학논문집
    • /
    • 제16권2호
    • /
    • pp.158-166
    • /
    • 2004
  • The performance of a heat pump using $CO_2$ is predicted and analyzed by using a cycle simulation model developed in this study. Cycle simulations are conducted by varying design parameters and operating conditions with the applications of advanced techniques to improve system performance. The applied systems in the simulations are internal heat exchanger, expander, and 2-stage compression with intercooling. As a result, the applications of advanced techniques improve the heating and cooling performances of the transcritical $CO_2$ cycle by 8∼26% and 20∼30%, respectively, over the basic cycle.

Design and Exergy Analysis for a Combined Cycle of Liquid/Solid $CO_2$ Production and Gas Turbine using LNG Cold/Hot Energy

  • Lee, Geun-Sik
    • International Journal of Air-Conditioning and Refrigeration
    • /
    • 제15권1호
    • /
    • pp.34-45
    • /
    • 2007
  • In order to reduce the compression power and to use the overall energy contained in LNG effectively, a combined cycle is devised and simulated. The combined cycle is composed of two cycles; one is an open cycle of liquid/solid carbon dioxide production cycle utilizing LNG cold energy in $CO_2$ condenser and the other is a closed cycle gas turbine which supplies power to the $CO_2$ cycle, utilizes LNG cold energy for lowering the compressor inlet temperature, and uses the heating value of LNG at the burner. The power consumed for the $CO_2$ cycle is investigated in terms of a solid $CO_2$ production ratio. The present study shows that much reduction in both $CO_2$ compression power (only 35% of the power used in conventional dry ice production cycle) and $CO_2$ condenser pressure could be achieved by utilizing LNG cold energy and that high cycle efficiency (55.3% at maximum power condition) in the gas turbine could be accomplished with the adoption of compressor inlet cooling and regenerator. Exergy analysis shows that irreversibility in the combined cycle increases linearly as a solid $CO_2$ production ratio increases and most of the irreversibility occurs in the condenser and the heat exchanger for compressor inlet cooling. Hence, incoming LNG cold energy to the above components should be used more effectively.

스크롤기구를 적용한 신형식 스털링 엔진 (New-Type Stirling Engine Employing the Scroll Mechanism)

  • 김영민;신동길;이장희
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2003년도 춘계학술대회
    • /
    • pp.1709-1716
    • /
    • 2003
  • Stirling engine is a heat engine with a high potential efficiency, multi-fuel capability, its low emission, quiet operation, very low maintenance requirement and long life. The Stirling cycle can ideally achieve optimum thermodynamic efficiency of the Carnot cycle. But the actual efficiency of practical reciprocating Stirling engine is much less than that of ideal Stirling cycle due to several mechanical limits. This paper presents a new-type Stirling engine employing the scroll mechanism superior to the reciprocating Stirling engine. The new-type Stirling engine is characterized as traits of continuous and wholly seperated compression and expansion, one-way flow, direct cooling and heating through the extensive surfaces of scroll wraps. By means of this traits, the new-type Stirling engine can achieve thermodynamic cycle closer to the ideal Stirling cycle and have many mechanical merits. Also, the new-type Stirling cycle can be applied as Stirling refrigerator and Duplex Stirling machine.

  • PDF

유기 랭킨 사이클 시스템의 열역학적 최적화 (Thermodynamic Optimization of a Organic Rankine Power Cycle)

  • 이원용;원승호;정헌생
    • 태양에너지
    • /
    • 제10권3호
    • /
    • pp.35-45
    • /
    • 1990
  • 주어진 열원에서 유기 랭킨 사이클 시스템을 통해 얻을 수 있는 최대 출력 조건에서의 최적 효율을 구하기 위한 이론식을 유도하였으며, 이것이 작동 유체의 열물성치에 의한 엔탈피를 기초로 하여 계산된 열효율과 비교하여 잘 일치되는 것을 확인하였다. 본 연구에서 유도된 결과식에 의해 최대 출력은 열원의 열용량과 초기 온도 그리고 핀치점 온도차만의 함수임을 알 수 있었으며, 이 때의 효율은 열원의 열용량과 관계없이 입열원과 방출열원 초기 온도와 핀치점 온도차의 함수임을 알 수 있었다. 여기서 구한 최대 출력시의 효율식은 실제 랭킨 사이클 시스템의 설계를 위한 최적 설계지표로 사용될 수 있으며 실제 발전소의 성능 예측을 위한 최적 효율로도 사용될 수 있을 것이다.

  • PDF