• Title/Summary/Keyword: Heating cartridges

Search Result 4, Processing Time 0.028 seconds

Multi-point Dieless Forming Technology Using Local Heating Effect (국부가열효과를 활용한 다점성형공정기술)

  • Park, J.W.
    • Transactions of Materials Processing
    • /
    • v.31 no.2
    • /
    • pp.96-102
    • /
    • 2022
  • The multi-point dieless forming technology is one of flexible forming technologies that can form 3D curved surfaces of various shapes utilizing a lot of punch arrangements. A new technology that can simultaneously apply high-temperature forming and flexible forming technology by fusing local heating effect to such multi-point dieless forming technology was proposed in the present study. A simple local heating multi-point dieless forming apparatus was fabricated to confirm the applicability of this new technology. This equipment was designed to be used as a heat source by inserting heating cartridges in the head of the multi-point punch. Cartridges were used for all individual punches. Using the manufactured equipment, the time to raise the temperature to the target temperature and the surface temperature of the punch head part in contact with the plate were measured. In addition, forming experiments were carried out according to sheet material temperature (100 ℃, 200 ℃, and 300 ℃) to obtain forming results for each condition. The applicability and feasibility of this technology were confirmed through experimental results.

Rapid Preparation and Quality Control of $^{99m}Tc$-ECD, $MAG_3$ and MIBI using Microwave Heating and Sep-Pak Cartridges (마이크로웨이브와 Sep-Pak 카트리지를 이용한 $^{99m}Tc$-ECD, $MAG_3$, MIBI의 신속한 제조 및 정도관리)

  • Oh, Seung-Jun;Moon, Dae-Hyuk;Ryu, Jin-Sook;Lee, Hee-Kyung
    • The Korean Journal of Nuclear Medicine
    • /
    • v.33 no.4
    • /
    • pp.430-438
    • /
    • 1999
  • Purpose: We evaluated a rapid preparation procedures for the labeling and quality control of $^{99m}Tc$-ECD, $MAG_3$, and MIBI using microwave heating and Sep-Pak cartridges. Materials and Methods: $^{99m}Tc$ labeling of ECD, $MAG_3$, and MIBI kit preparation was performed according to the package inserts with microwave heating modification. Heating time was 10-15 sec, and heating was performed with 3 mm plastic bottle with screw cap to prevent radiation contamination. Labeling efficiency was obtained with $C_{18}$ or Alumina N Sep-Pak cartridges. Results: The radiochemical purity of $93{\sim}96%$ for $^{99m}Tc$-ECD and $95{\sim}99%$ for $^{99m}Tc$-MIBI was obtained using Alumina N Sep-Pak cartridge. The optimum irradiation time of microwave method for 3 ml $^{99m}Tc$-labeled radiopharmaceutical solution was 10 sec for $^{99m}Tc$-ECD and $^{99m}Tc$-MIBI, and 15 sec for $^{99m}Tc-MAG_3$. The results of quality control data with Sep-Pak cartridges were well correlated with TLC method. The total preparation time of these radiopharmcaeuticals was $5{\sim}6min$ including quality control procedure. Conclusion: This study demonstrates that radiopharmaceuticals preparation by microwave heating and quality control by Sep-Pak cartridges can be efficiently utilized as an alternative to the recommended method by manufacturer's manual.

  • PDF

Heating and Cooling Channel Design of Cross-Shaped Die for Warm Forming of Magnesium Alloy Sheet (Mg 온간성형을 위한 십자형상 금형의 가열/냉각 채널 설계)

  • Choi, S.C.;Ko, D.S.;Kim, H.Y.;Kim, H.J.;Hong, S.M.;Ryu, S.Y.;Shin, Y.S.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2008.05a
    • /
    • pp.370-373
    • /
    • 2008
  • It is known that the temperatures of die, punch, holder and punch pad need to be kept different to get better formability in Mg sheet forming processes. Heating and cooling channels are usually equipped in each tool to assign different temperature. This study focused on the optimal design of the heating and cooling channels for a cross-shaped deep drawing die set. While the die and blankholder were heated to and kept at $250^{\circ}C$ by using heat cartridges, the punch and punch pad were kept at much lower temperature than that of the die and blankholder by water circulating through cooling channels. All the approaches were done by numerical analyses, aiming to maximize the cup height and to minimize the punch corner radius without any failure.

  • PDF

Determination of Heterocyclic Amines and Acrylamide in Agricultural Products with Liquid Chromatography-Tandem Mass Spectrometry

  • Lee, Kyung-Jun;Lee, Gae-Ho;Kim, HaeSol;Oh, Min-Seok;Chu, Seok;Hwang, In Ju;Lee, Jee-yeon;Choi, Ari;Kim, Cho-il;Park, Hyun-Mee
    • Toxicological Research
    • /
    • v.31 no.3
    • /
    • pp.255-264
    • /
    • 2015
  • Heterocyclic amines (HCAs) and acrylamide are unintended hazardous substances generated by heating or processing of foods and are known as carcinogenic and mutagenic agents by the animal experiments. A simple method was established for a rapid and accurate determination of 12 types of HCAs (IQ, MeIQ, Glu-P-1, Glu-P-2, MeIQx, Trp-P-1, Trp-P-2, PhIP, $A{\alpha}C$, $MeA{\alpha}C$, Harman and Norharman) and acrylamide in three food matrices (non-fat liquid, non-fat solid and fat solid) by isotope dilution liquid chromatography-tandem mass spectrometry (LC-MS/MS). In every sample, a mixture of internal standards including $IQ-d_3$, $MeIQx-d_3$, $PhIP-d_3$, $Trp-P-2-^{13}C_2-^{15}N$ and $MeA{\alpha}C-d_3$ was spiked for quantification of HCAs and $^{13}C_3$-acrylamide was also spiked for the analysis of acrylamide. HCAs and acrylamide in sample were extracted with acetonitrile and water, respectively, and then two solid-phase extraction cartridges, ChemElut: HLB for HCAs and Accucat: HLB for acrylamide, were used for efficiently removing interferences such as pigment, lipid, polar, nonpolar and ionic compounds. Established method was validated in terms of recovery, accuracy, precision, limit of detection, limit of quantitation, and linearity. This method showed good precision (RSD < 20%), accuracy (71.8~119.1%) and recovery (66.0~118.9%). The detection limits were < 3.1 ng/g for all analytes. The correlation coefficients for all the HCAs and acrylamide were > 0.995, showing excellent linearity. These methods for the detection of HCAs and acrylamide by LC-MS/MS were applied to real samples and were successfully used for quantitative monitoring in the total diet study and this can be applied to risk assessment in various food matrices.