• Title/Summary/Keyword: Heating capacity

Search Result 677, Processing Time 0.024 seconds

Research on the heating performance of SCW heat pump system for residential house (주거용 건물의 지하수 이용 지열 히트펌프 시스템의 난방성능 특성에 관한 연구)

  • Kim, Ju-Hwa;Kim, Ju-Young;Hong, Won-Hwa;Ahn, Chang-Hwan
    • Proceeding of Spring/Autumn Annual Conference of KHA
    • /
    • 2008.04a
    • /
    • pp.431-435
    • /
    • 2008
  • Geothermal heat pump system using standing column wells as their ground heat exchanger can be used as a highly efficient source of heating and cooling in massive buildings. But there is no case of a small scale residential house. So this study estimated heating coefficient of performance(COP) of geothermal heat pump system using standing column well type which is excellent in heat recovery in the residential house. As a result of analysis, The COP of heat pump is over average 6 and is excellent. And in consequence of making a comparative study according to the bleeding, the cop is higher in the case of bleeding. Therefore, bleeding affects the performance of the system. This study has shown performance result that stands on actual data. Therefore, this study provides ground data that needs when a low capacity of system designs for a residence with confidence elevation.

  • PDF

Thermal Performance Assessment of Wet Ondol and Electric Ondol System (습식온돌시스템과 전기온돌시스템의 열성능 평가)

  • Han, Byung-Jo;Koo, Kyung-Wan
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.60 no.1
    • /
    • pp.214-220
    • /
    • 2011
  • This paper studies about the assessment of thermal performance between wet ondol system and electric ondol system. Electrical ondol systems shows faster warm-up time, higher floor surface temperature distribution and lower power consumption than wet ondol system. However, if we provide heat regularly wet ondol system which has more heat capacity shows greater thermal storage than electric ondol system. Therefore, we could conclude that wet ondol system which keeps temperature regularly by the thermal storage show better energy-efficiency in case of using the central heating and district heating system. However, Electrical ondol system shows better efficiency in case of using the space during short time or individual heating systems which needs to heat quickly. The Experiment says that electric ondol system has more benefits on timing to reach the set temperature and energy-efficiency than wet ondol system.

Study on the Performance of Heat Pump Using Non-azeotropic Refrigerant Mixtures R-22+R-114 (비공비혼합냉매 R-22+R-114를 이용한 열펌프의 성능에 관한 연구)

  • 박기원;구학근;오후규
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.17 no.9
    • /
    • pp.2131-2137
    • /
    • 1993
  • This study, examines the performance and the heat pump cycle systematizing characteristics for non-azeotropic refrigerant systems. In order to conduct such an examination, the cycle characteristics of heat pumps for pure R-22, R-114, and their mixtures were experimentally investigated. The results show that cooling/heating capacities for the mixtures was more suited at the evaporating temperature of $5^{\circ}C$ than that of $0^{\circ}C$, $-5^{\circ}C$, and $-10^{\circ}C$. The C.O.P of the 50 wt% mixtures was considerably higher than for pure R-22, and the compression power of the 25 wt% was as much as 60% lower than that of pure R-22. Even small fractional mixture variations can lead to significant changes in the characteristics of the heat pump cycle. This experiment verified the importance of accurate weight fractions of refrigerant mixtures.

Temperature History of Concrete exposed to Extremely Cold Weather with the Variation of Capacity of Heating Coil (열선 전력 용량에 따른 극한온도 조건에서의 콘크리트 온도이력 특성)

  • Jung, Eun-Bong;Jung, Sang-Hyeon;Ahn, Sang-Ku;Ko, Gyeong-Taek;Han, Min-Cheol;Han, Cheon-Goo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2012.11a
    • /
    • pp.51-53
    • /
    • 2012
  • This paper is to report the results of mock-up test for concrete during severe cold weather. The temperature is fixed at -20℃. The mock-up specimens were fabricated simulating slab, wall and column. Heating coil with different heat capacity with 5 W and 15 W were embedded at slab specimen. Test results revealed that at -20℃, temperature dropped below 0℃ since around 70 hours. It takes 7 days to gain 45°D·D of maturity for avoiding frost damage at early age.

  • PDF

Simulation of the Thermal Performance on an Ondol House with Hot Water Heating in Consideration of Radiation Heat Transfer (복사열전달을 고려한 모형 온수온돌 주택 열성능 시뮬레이션)

  • Choi, Y.D.;Yoon, J.H.;Hong, J.K.;Lee, N.H.;Kang, D.H.
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.5 no.4
    • /
    • pp.295-305
    • /
    • 1993
  • Thermal performance of test cell of model hot water Ondol house was simulated by equivalence heat resistence and heat capacity method. In this method wall was replaced by two equivalence and one heat capacity. This method enables to simulate the variation of temperature of each element of model house. The effect of pipe diameter, pitch of pipe and with or without consideration of inter-radiation between wall surfaces on the energy consumption rate were investgated. Results show that radiations between the ground surface of room and wall surfaces contribute to the heating of room air by reducing the convection heat loss through the wall surfaces.

  • PDF

Development of a Lignite Coal Heater for Livestock Facilities and Performance Test (축산용 갈탄 난방기의 개발과 성능시험)

  • 장동일;한우석;임영일;장요한;염호
    • Journal of Animal Environmental Science
    • /
    • v.5 no.2
    • /
    • pp.101-106
    • /
    • 1999
  • This study was conducted to develop a lignite coal heater which can be used to livestock facilities and to test performance of the heater developed. Experimental results are as following: 1. Heating capacity of the heater was 85,000 kcal/h. 2. The concentrations of CO gas in the exhaust gas were the maximum of 759 ppm and the average of 319 ppm; for the concentrations of NOx, the maximum of 212 ppm and the average of 57 ppm ; for the concentrations of SO2 gas, the maximum of 302 ppm and the average of 99 ppm. As the values were less than the allowable concentration limites, they did not violate the air environment law. 3. Problems such as frequent interruption of fuel supply and bridge state were happened. Therefore, it was required that these should be resolved in the future.

Spring Length Effect on the Flow Capacity of automatic Flow-Temperature Control Valve (자동 정유량 온도조절밸브의 스프링 길이가 밸브 용량에 미치는 영향)

  • Yoo, Seon-Hak;Kang, Seung-Duk;Park, Kyung-Am
    • 유체기계공업학회:학술대회논문집
    • /
    • 2003.12a
    • /
    • pp.174-177
    • /
    • 2003
  • The automatic temperature control valve is used to control the flow rate of heating water in the large apartment complex and buildings. It is important to have simillar heating flow rate in the apartments, even though the apartment is top or bottom floors. To achieve those purposes, the automatic flow-temperature control valve was developed. The perfromance of this control valve is effected by the catridge shape and spring length. The flow capacity of this control valve is obtained with the different shape of catridges and with change of spring length.

  • PDF

Performance Characteristics of R134a Supercritical Heat Pump (R134a 냉매용 초임계 히트펌프의 성능 특성)

  • Choi, In-Soo
    • Journal of Power System Engineering
    • /
    • v.18 no.4
    • /
    • pp.60-65
    • /
    • 2014
  • In this paper, cycle performance analysis for heating capacity, compression work and COP of R134a supercritical heat pump is presented to offer the basic design data for the operating parameters of the system. The operating parameters considered in this study include superheating degree, pressure and outlet temperature of gas cooler, compressor efficiency and evaporating temperature in the R134a supercritical heat pump system. The main results were summarized as follows : Superheating degree, pressure and outlet temperature of gas cooler, compressor efficiency and evaporating temperature of R134a heat pump system have an effect on the heating capacity, compression work and COP of this system. With a thorough grasp of these effect, it is necessary to design the supercritical heat pump using R134a. The prediction for COP of R134a supercritical heat pump have been proposed through multiple regression analysis.

Analysis on Cascade Cycle Heat Pump Application as Night Storage Heater (심야전력을 이용한 Cascade Heat Pump Cycle의 운전결과 분석)

  • JUNG, H.;HWANG, S.W.;LEE, C.H.
    • Journal of the Korean Society of Mechanical Technology
    • /
    • v.13 no.1
    • /
    • pp.113-118
    • /
    • 2011
  • To analyze and verify the effect of replacing thermal storage heater by a cascade cycle heat pump using midnight electricity was installed and tested at a customer's house in Wonju, Korea. The electric night storage heater is consist of 30kW electric heater and 2,700 liters of thermal storage water tank to supply hot water for warming house floor. The power for electric heater was cut off and hot water was only generated by cascade cycle heat pump. Current thermal storage water tank was not eliminated and electric heater wiring was modified. Some operation logic of the heat pump was also modified for proper operation. The required capacity of the heat pump and hot water temperature for given warming condition were estimated. The estimated capacity of heat pump was about 19kW and estimated hot water temperature for proper heating was at least $75^{\circ}C$.

The Study on Emulsifying and Foaming Properties of Buckwheat Protein Isolate (분리 메밀 단백질의 유화 및 기포특성에 관한 연구)

  • 손경희;최희선
    • Korean journal of food and cookery science
    • /
    • v.9 no.1
    • /
    • pp.43-51
    • /
    • 1993
  • Buckwheat protein isolate was tested for the effects of pH, addition of sodium chloride and heat treatment on solubility, emulsion capacities, emulsion stability, surface hydrophobicity, foam capacities and foam stability. The solubility of buckwheat protein isolate was affected by pH and showed the lowest value at pH 4.5, the isoelectric point of buckwheat protein isolate. The solubility significantly as the pH value reached closer to either ends of the pH, i.e., pH 1.0 and 11.0. The effects of NaCl concentration on solubility were as follows; at pH 2.0, the solubility significantly decreased when NaCl was added; at pH 4.5, it increased above 0.6 M; at pH 7.0 it increased; and at pH 9.0 it decreased. The solubility increased above $80^{\circ}C$, at all pH ranges. The emulsion capacity was the lowest at pH 4.5. It significantly increased as the pH approached higher acidic or alkalic regions. At pH 2.0, when NaCl was added, the emulsion capacity decreased, but it increased at pH 4.5 and showed the maximum value at pH 7.0 and 9.0 with 0.6 M and 0.8 M NaCl concentrations. Upon heating, the emulsion capacity decreased at acidic pH's but was maximised at pH 7.0 and 9.0 on $60^{\circ}C$ heat treatment. The emulsion stability was the lowest at pH 4.5 but increased with heat treatment. At acidic pH, the emulsion stability increased with the increase in NaCl concentration but decreased at pH 7.0 and 9.0. Generally, at other pH ranges, the emulsion stability was decreased with increased heating temperature. The surface hydrophobicity showed the highest value at pH 2.0 and the lowest value at pH 11.0. As NaCl concentrationed, the surface hydrophobicity decreased at acidic pH. The NaCl concentration had no significant effects on surface hydrophobicity at pH 7.0, 9.0 except for the highest value observed at 0.8 M and 0.4 M. At all pH ranges, the surface hydrophobicity was increased, when the temperature increased. The foam capacity decreased, with increased in pH value. At acidic pH, the foam capacity was decreased with the increased in NaCl concentration. The highest value was observed upon adding 0.2 M or 0.4 M NaCl at pH 7.0 and 9.0. Heat treatments of $60^{\circ}C$ and $40^{\circ}C$ showed the highest foam capacity values at pH 2.0 and 4.5, respectively. At pH 7.0 and 9.0, the foam capacity decreased with the increased in temperature. The foam stability was not significantly related to different pH values. The addition of 0.4 M NaCl at pH 2.0, 7.0 and 9.0 showed the highest stability and the addition of 1.0 M at pH 4.5 showed the lowest. The higher the heating temperature, the lower the foam stability at pH 2.0 and 9.0. However, the foam stability increased at pH 4.5 and 7.0 before reaching $80^{\circ}C$.

  • PDF