• Title/Summary/Keyword: Heating block

Search Result 109, Processing Time 0.025 seconds

Characteristics and Fabrication of GRIN glass by ion-stuffing method (Ion-stuffing방법에 의한 GRIN glass의 제조와 특성)

  • 진영훈;한덕희;이병철;류봉기
    • Journal of the Korean institute of surface engineering
    • /
    • v.34 no.3
    • /
    • pp.240-246
    • /
    • 2001
  • The possibility of using a glass block with the composition of sodium borosilicate as starting materials for GRIN glass was examined from the view points of the phase separation of the matrix glass, the effects of leaching and the heating conditions for a porous structure, and the change in the refractive index. Glass specimens with similar compositions were prepared in the form of porous glass using a phase-separation technique. An examination of the heating and leaching conditions and the microstructure dependence of these conditions was made.; Specimens with porous structure were obtained when the heat treatment and leaching conditions were fixed at $540^{\circ}C$ for 30hrs and in a 0.3N$ H_2$$SO_4$ solution at $100^{\circ}C$, respectively. The resultant specimens had some important features on the GRIN glass.; the depth of the gradient and the change in refractive index (Δn) were 4mm and 0.015~0.02, respectively.

  • PDF

Modeling of Soldering Process using Longitudinal Ultrasonic (종방향 초음파를 이용한 솔더링 공정의 모델링)

  • 김정호;이지혜;유중돈;최두선
    • Journal of Welding and Joining
    • /
    • v.21 no.5
    • /
    • pp.534-539
    • /
    • 2003
  • An efficient soldering process using the longitudinal ultrasonic vibration is introduced in this work for electronic packaging. The effects of the process parameters such as the ultrasonic frequency, amplitude, dimension of the metal bump and solder are analyzed through a viscoelastic lumped model. The viscoelastic properties of the eutectic solder were measured for calculation and evaluation of heat generation capability of the solder. Experiments were conducted to verify the possibility of the proposed ultrasonic soldering method by inserting the Cu and Au bumps into the solder block. Localized heating due to ultrasonic vibration melts the solder near the metal bump, which demonstrates the applicability of the ultrasonic soldering method to the high-density electronic packaging.

Development of Automatic Tool Changer of SMA Tool Holder (SMA를 이용한 공구홀더의 자동공구교환장치 개발)

  • Lee, Sungcheul;Ro, Seung-Kook;Park, Jong-Kweon
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.25 no.1
    • /
    • pp.1-6
    • /
    • 2016
  • Micromanufacturing is a useful system for reducing energy consumption. For micromanufacturing, tool clamping and workpiece clamping are important components to realize the machining process. Therefore, a shape memory alloy (SMA) ring type tool holder is developed. In addition, this holder needs cooling and heating processes to execute the tool clamping process. This study suggests a cooling/heating device based on peltier elements. The device will be applied to the heating/cooling process of an automatic tool changer (ATC) for the SMA tool holder. This study introduces the configuration and operating principle of the proposed ATC system. The description and prototype evaluation of this system were given. Plastic bolt and aluminum block were selected to enhance the cooling performance, and the installed tool was changed in 17 s during the experiments.

Study on Thermal Analysis for Heating System of Mobile Smart Device Cover Glass Molding Machine (Mobile Smart Device Cover Glass 성형기기의 가열시스템 열해석에 관한 연구)

  • Shin, Hwan June;Lee, Jun Kyoung
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.13 no.4
    • /
    • pp.50-55
    • /
    • 2014
  • Currently, flat cover glasses are widely applied to mobile devices. However, for a good design and for convenience of use, curved cover glasses are in demand. Thus, many companies are attempting to produce curved cover glasses using a shaving technique, but the production efficiency is very low. Therefore, a molding technique has been adopted to increase the efficiency of curved glass production systems. For a glass molding system, a uniform temperature distribution of the mold is crucial to produce high-quality curved cover glasses. Before setting the heating conditions of the molding system for a uniform temperature distribution by a thermal analysis, verification is required. Therefore, in this study, temperature measurements were conducted for a prototype molding system and the experimental results were compared with simulation computations. The temperatures of the heating block surface were in good agreement with the computational results for transient and steady conditions.

Performance of Liquid-Cooled Cold Plates for Multiple Heat Sources in a Humanoid Robot (인간형 로봇 내부의 다중 열원에 대한 수냉식 냉각판의 성능)

  • Karng, Sarng-Woo;Kim, Seo-Young;Moon, Jong-Min;Hwang, Kyu-Dae;Rhee, Gwang-Hoon
    • Proceedings of the KSME Conference
    • /
    • 2008.11b
    • /
    • pp.2053-2058
    • /
    • 2008
  • It was investigated thermal performances on two array types of a serial circulation and a two-way parallel circulation for six water-cooled cold plates covered with non-metallic material (polycarbonate, PC) to reduce weight of the cooling devices for humanoid robot cooling. Six cold plates attached on $10{\times}10\;mm^2$ copper base : $0.5{\times}0.5\;mm^2$ pin-finned surfaces of 1.5 mm high with 0.5 mm array spacing, was mounted on six copper heating blocks with isothermal conditions of $50{\sim}90^{\circ}C$, respectively. In order to compare thermal characteristics according to two circulation types, the surface temperatures of heating blocks and the cooling water temperatures at inlets and outlets of cold plates were measured. From the results, it was found that a two-way parallel circulation was better performance than a serial circulation in terms of total thermal resistance, total heat transfer rate, and surface temperature rises from $1^{st}$ heating block to last one for six multiple cold plates.

  • PDF

An Experimental visualization of the Pool Boiling Heat Transfer on the Inclined square surface (경사진 가열면에서의 수조비등에 대한 가시화 연구)

  • Kim, J.K.;Song, J.H.;Kim, S.B.;Kim, H.D.
    • Proceedings of the KSME Conference
    • /
    • 2001.06e
    • /
    • pp.63-68
    • /
    • 2001
  • An experimental study was carried out to identify the various regimes of natural convective boiling and to determine the Critical Heat Flux(CHF) on a 70mm square surface which is inclined at $180^{\circ}$(upward), $90^{\circ}, \;45^{\circ}$. The heater block made of copper with cartridge heaters is submerged in a water tank with windows for visualization. As the heat flux increases from $100kW/m^2$ to $1.1MW/m^2$, the heat transfer regime migrates from the nucleate boiling to film boiling and results in a rapid heat up of the heater block. An explosive vapor generation on the heated surface, whose size and frequency are characterized by the heat flux, is visualized by using a digital camcorder with $512{\times}512$ pixel size at 30fps.

  • PDF

Boiling Heat Transfer from a locally Heated Surface -A Simulated Electronic Device under Liquid Immersion Cooling- (국부적인 발열부분을 가진 표면에서의 잠김 비등열전달 -전자부품 액침 냉각에서의 응용-)

  • 하광순;최상민
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.15 no.2
    • /
    • pp.685-692
    • /
    • 1991
  • The pool boiling behavior of a heated surface has been investigated experimentally, focusing on the cases when only a part of the contact surface is heated. Characteristic boiling curves are obtained with circular metal surface test pieces heated below while immersed in Refrigerant-113. Locally heated test pieces are fabricated by inserting a heating block at the center inside a larger conducting block. Overall heat transfer rates are measured while the experimental conditions are systematically varied. The local temperature profiles along the radius are measured for conducting blocks. It is found that the conjugated boiling condition exists and the total heat fluxes should be correlated to a suitably defined temperature difference.

Study on the manufacturing of high-frequency heating Japanese cedar laminated board by finger jointing method (1) - Gluing characteristics of Japnese cedar board by PVAc emulsion adhesives - (핑거접합방식에 의한 삼나무의 고주파가열 집성판 제조에 관한 연구 (1) - 삼나무 판재의 초산비닐수지 접착특성 -)

  • So Won-Tek;Chai Jyung-Ki
    • Journal of the Korea Furniture Society
    • /
    • v.16 no.1
    • /
    • pp.1-8
    • /
    • 2005
  • This experiment was carried out to investigate the gluing characteristics of poly vinyl acetate emulsion adhesive(PVAc) on the Cryptomeria japonica laminated boards. This sample trees are major planting species and have been planted in southern district for a long time. The optimum gluing conditions for laminated board were summarized as follows; the amount of spreading glue, assembly time, clamping pressure, and clamping time for PVAc resin were $200g/m^2$, 10min., $5kg/cm^2$, and 6hrs., respectively, and the relative formulae between extension ratio(x) and block shear strength(y) was $y=-9.6x+85.2(R^2=0.95)$.

  • PDF

Various Thermodynamic Factors in Designing Nanostructured Materials from Block Copolymers

  • Cho, Jun-Han
    • Proceedings of the Polymer Society of Korea Conference
    • /
    • 2006.10a
    • /
    • pp.207-208
    • /
    • 2006
  • Here, we discuss various thermodynamic factors that affect the design of nanomaterials based on block copolymers. It is well known that the ordering behavior is determined by composition, chain size N, and the ubiquitous Flory. However, the recent discovery of ordering upon heating, immisibility loops, and baroplasticity addresses a clear need for further microscopic interpretation of such. in order to help to design nanomaterials at aimed purposes. Employing a perturbed hard sphere chain model, the molecular factors such as self and cross-interactions, free space distribution, and directional interactions are incorporated in. It is shown that not only typical ordering phenomena, but also the recent observations just mentioned are all described through this unified way.

  • PDF

Fabrication of Colloidal Clusters of Polymer Microspheres and Nonspherical Hollow Micro-particles from Pickering Emulsions

  • Cho, Young-Sang;Kim, Tae-Yeol;Yi, Gi-Ra;Kim, Young-Kuk;Choi, Chul-Jin
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.1
    • /
    • pp.159-166
    • /
    • 2012
  • We have introduced the Pickering emulsion systems to generate novel confining geometries for the selforganization of monodisperse polymer microspheres using nanoparticle-stabilized emulsion droplets encapsulating the building block particles. Then, through the slow evaporation of emulsion phases by heating, these microspheres were packed into regular polyhedral colloidal clusters covered with nanoparticle-stabilizers made of silica. Furthermore, polymer composite colloidal clusters were burnt out leaving nonspherical hollow micro-particles, in which the configurations of the cluster structure were preserved during calcination. The selfassembled porous architectures in this study will be potentially useful in various applications such as novel building block particles or supporting materials for catalysis or gas adsorption.