• Title/Summary/Keyword: Heating and low temperature

Search Result 956, Processing Time 0.027 seconds

Physicochemical Properties of Freeze-dried Corn Starch Sponge Matrix (동결 건조된 옥수수 전분 스펀지 매트릭스의 이화학적 특성)

  • Han, Kyung-Hoon;Kim, Doh-Hee;Song, Kwan-Yong;Lee, Kye-Heui;Yoon, Taek-Joon;Yang, Sung-Bum;Lee, Seog-Won
    • The Korean Journal of Food And Nutrition
    • /
    • v.23 no.3
    • /
    • pp.419-427
    • /
    • 2010
  • The focus of the current study was to investigate the physicochemical properties of a corn starch-sponge matrix prepared at a low concentration below gel forming by freeze-drying. The effect of variables(starch concentration, heating temperature, and heating hold time) on the physicochemical properties of the samples was analyzed by response-surface methodology. Regression models on the properties of samples such as hardness, springiness, and water solubility index(WSI) showed high correlation coefficients(r>0.95) and significant F values, but regression models for the other properties(swelling power, apparent viscosity, reducing sugar content, and digestibility) showed them to have relatively low significance. Sample hardness of sample showed the highest value at condition of $90^{\circ}C$ and 5%, whereas springiness was at a maximum at $130^{\circ}C$ and 5%. Also, at 1% of starch concentration, mechanical properties were greatly decreased as the relative humidity increased, compared with the 3% and 5%, especially in the hardness of samples. The WSI showed an increasing trend with heating temperature regardless of starch concentration. Overall, the physicochemical properties of freeze-dried corn starch-sponge matrix were influenced much more by starch concentration and heating temperature than by heating hold time. The results of this study show that the basic properties of freeze-dried corn starch-sponge matrix can be used for the specific food applications or as a functional material for its stability.

Effect of Moisture Migration in Concrete with Hating Rate on Concrete Spalling (가열속도에 따른 콘크리트 내부의 수분이동이 폭렬발생에 미치는 영향)

  • Choe, Gyeong-Cheol;Kim, Gyu-Yong;Nam, Jeong-Soo;Kim, Hong-Seop;Yoon, Min-Ho;Hwang, Ui-Chul
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2017.05a
    • /
    • pp.246-247
    • /
    • 2017
  • In this study, it reviewed the effect of moisture migration in concrete with heating rate on concrete spalling. Concrete specimens with compressive strength 30MPa and 110MPa are used and its size is □100×100×h200mm. And, two kinds of heating rate are set such as IS0 834 and 1℃/min. As a result, in the concrete specimen exposed to ISO 834 standard heating condition, moisture could migrate through pore network and surface concrete pieces fall out by generating moisture clog near the surface in 110MPa concrete specimen. Meanwhile, In the case of concrete specimens exposed to 1℃/min. heating condition, it is appeared that moisture could not migrate because temperature is distributed uniformly. Therefore, surface spalling is not occurred with low heating rate. However, in the case of 110MPa concrete specimen is exploded even though it heated by low heating rate.

  • PDF

Natural Convection in a Rectangular Enclosure with Localized Heating from Below (사각공간내에서의 부분바닥가열에 의한 자연대류에 관한 연구)

  • Han, H.T.
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.7 no.2
    • /
    • pp.287-297
    • /
    • 1995
  • In this study, the geometry consists of a two-dimensional rectangular enclosure with localized heating from below. The size and the location of the heater on the floor has been varied, and one of the vertical walls remains at a low temperature simulating a cold window. The governing equations for momentum, energy and continuity, which are coupled with turbulent equations have been solved using a finite volume method. A low Reynolds number $k-{\varepsilon}$ model has been incorporated to solve the turbulent kinetic energy and the dissipation rate. The heat transfer characteristics and the thermal environmental characteristics of the room have been obtained for various system parameters in a room with a partially heated floor.

  • PDF

Local transport properties of coated conductors by laser-scan imaging methods

  • Kim, Gracia;Jo, William;Nam, Dahyun;Cheong, Hyeonsik;Moon, Seoung Hyun
    • Progress in Superconductivity and Cryogenics
    • /
    • v.18 no.2
    • /
    • pp.1-4
    • /
    • 2016
  • To observe the superconducting current and structural properties of high critical temperature ($T_c$) superconductors (HTS), we suggest the following imaging methods: Room temperature imaging (RTI) through thermal heating, low-temperature bolometric microscopy (LTBM) and Raman scattering imaging. RTI and LTBM images visualize thermal-electric voltages as different thermal gradients at room temperature (RT) and superconducting current dissipation at near-$T_c$, respectively. Using RTI, we can obtain structural information about the surface uniformity and positions of impurities. LTBM images show the flux flow in two dimensions as a function of the local critical currents. Raman imaging is transformed from Raman survey spectra in particular areas, and the Raman vibration modes can be combined. Raman imaging can quantify the vibration modes of the areas. Therefore, we demonstrate the spatial transport properties of superconducting materials by combining the results. In addition, this enables visualization of the effect of current flow on the distribution of impurities in a uniform superconducting crystalline material. These imaging methods facilitate direct examination of the local properties of superconducting materials and wires.

Operational Strategy of Anaerobic Digesters Considering Energy Balance (에너지수지를 고려한 혐기성소화시설의 운영방안)

  • Hong, Seong-Gu;Kwun, Soon-Kuk
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.50 no.4
    • /
    • pp.59-66
    • /
    • 2008
  • Anaerobic digestion system is getting more attractive in that it produces biogas in the process of organic waste stabilization. Net energy production is important when biogas production is concerned. In this study, net energy production was evaluated with respect to biogas production and heat losses in a hypothetical digester. Under the condition of digester operation with slurry inflow of 5% of TS, additional fuel is required to maintain digester temperature during the winder season. Substrate therefore, needs to have higher VS contents through co-digestion of silage or food waste that has greater values of methane production rate. Heating input slurry is important in cold season, which covers over 80% of heating requirement. Heat recovery from digestate is valuable to reduce the use of biogas for heating. It seems desirable to minimize slurry inflow when temperature is very low. Psychrophilic digestion may be a feasible option for reducing heating requirement.

The Turbulent Natural Convection in Membrane Type LNG Carrier Cofferdam (멤브레인형 LNG 수송선 코파담내의 난류 자연대류)

  • Chung, Han Shik;Jeong, Hyo Min;Kim, Kyung Kun;Ro, Sung Tack
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.23 no.2
    • /
    • pp.281-287
    • /
    • 1999
  • The turbulent natural convection in the membrane type LNG carrier cofferdam with heating points has been studied by numerical method. As the numerical methods, we introduced the three turbulence model, a standard $k-{\varepsilon}$ model and two case of a low Reynolds number models. The parameters considered for this study ore number and capacity of heating points i.e., $1{\leq}Ns{\leq}12$ and $1.0{\times}10^5{\leq}Qs(W/m^3){\leq}1.0{\times}10^8$. The results of the isotherms and velocity vectors have been represented for various parameters. The temperature and velocity at upper position in the space ore shown to be higher than those at lower position. For obtaining the optimal temperatures, $20{\sim}30^{\circ}C$ in the cofferdam space, the heating capacities show $2.0{\times}10^7W/m^3$ at g-heating points and $1.0{\times}10^7W/m^3$ at 12-points. The mean temperature in the cofferdam space can be expressed as a function of number and capacity of heating points.

Comparative Analysis of Accumulated Temperature for Seasonal Heating Load Calculation in Greenhouses (온실의 기간난방부하 산정을 위한 난방적산온도 비교분석)

  • Nam, Sang-Woon;Shin, Hyun-Ho;Seo, Dong-Uk
    • Journal of Bio-Environment Control
    • /
    • v.23 no.3
    • /
    • pp.192-198
    • /
    • 2014
  • To establish the design criteria for seasonal heating load calculation in greenhouses, standard weather data are required. However, they are being provided only at seven regions in Korea. So, instead of using standard weather data, in order to find the method to build design weather data for seasonal heating load calculation, heating degree-hour and heating degree-day were analyzed and compared by methods of fundamental equation, Mihara's equation and modified Mihara's equation using normal and thirty years from 1981 to 2010 hourly weather data provided by KMA and standard weather data provided by KSES. Average heating degree-hours calculated by fundamental equation using thirty years hourly weather data showed a good agreement with them using standard weather data. The 24 times of heating degree-day showed relatively big differences with heating degree-hour at the low setting temperature. Therefore, the heating degree-hour was considered more appropriate method to estimate the seasonal heating load. And to conclude, in regions which are not available standard weather data, we suggest that design weather data should be analyzed using thirty years hourly weather data. Average of heating degree-hours derived from every year hourly weather data during the whole period can be established as environmental design standards, and also minimum and maximum of them can be used as reference data for energy estimation.

Development of Temperature Control System to use in Building Heating of low Temperature Heat of PEMFC (고분자전해질 연료전지의 중저온 열원을 건물난방에 이용하기 위한 온도 제어장치 개발)

  • Cha, Kwang-Seok;Kim, Hway-Suh
    • Plant Journal
    • /
    • v.10 no.3
    • /
    • pp.45-51
    • /
    • 2014
  • This study performs several experiments on a newly developed temperature safety system that can be used for residential building heating systems, the heat source of which is derived from a conventional fuel cell. Prior to this, the hot water made from a fuel cell was not used in residential housing but just went to waste. The present safety system is installed in the current underfloor heating system. At first we used the CFD technique to develop a new heat exchanger. The fuel cell must satisfy the thermal conditions of the inlet temperature being $55^{\circ}C$ and the outlet temperature being $60^{\circ}C$. But variations in weather cause fluctuations in the heating water temperature. The experimental results show our new system capable of maintaining the temperature difference within a ${\pm}0.5^{\circ}C$ range. So we believe that our new PFMFC fuel cell stack array is a good candidate for being used in residential heating systems.

  • PDF

Induction Heating Apparatus for Rapid Heating of Flat-Type Metallic Mold in Hot Embossing (미세 패턴 성형용 판형 금형의 급속 가열을 위한 유도가열기구)

  • Hong, S.K.;Lee, S.H.;Heo, Y.M.;Kang, J.J.
    • Transactions of Materials Processing
    • /
    • v.16 no.4 s.94
    • /
    • pp.282-287
    • /
    • 2007
  • Hot embossing, one of Nanoimprint Lithography(NIL) techniques, has been getting attention as an alternative candidate of next generation patterning technologies by the advantages of simplicity and low cost compared to conventional photolithographies. A typical hot embossing usually, however, takes more than ten minutes for one cycle of the process because of a long thermal cycling. Over the last few years a number of studies have been made to reduce the cycle time for hot embossing or similar patterning processes. The target of this research is to develop an induction heating apparatus for heating a metallic micro patterning mold at very high speed with the large-area uniformity of temperature distribution. It was found that a 0.5 mm-thick nickel mold can be heated from $25^{\circ}C\;to\;150^{\circ}C$ within 1.5 seconds with the temperature variation of ${\pm}5^{\circ}C$ in 4-inch diameter area, using the induction heating apparatus.