• Title/Summary/Keyword: Heating System

Search Result 3,598, Processing Time 0.029 seconds

Strategy of Energy Saving and Thermal Environment Improvement for Intermittent Heating System in Apartment Buildings (공동주택 간헐난방시스템의 에너지 절감 및 열환경 개선방안 연구)

  • Ahn Byung-Cheon;Lee Tae-Won
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.17 no.1
    • /
    • pp.88-93
    • /
    • 2005
  • In this study, the operational characteristics on heating performance and energy consumption for intermittent hot water heating system in apartment buildings were research by simulation. The effects of apartment inlet hot water temperature and operation time per day on energy consumption and indoor thermal environment are investigated. The strategy of energy saving and thermal environment improvement is suggested in comparison with the existing ones.

ANN-Based VRF (variable refrigerant flow) system control (인공신경망 기반 VRF 시스템 제어)

  • Moon, Jin Woo
    • Land and Housing Review
    • /
    • v.10 no.3
    • /
    • pp.9-16
    • /
    • 2019
  • This study aimed at developing control algorithms for operating a variable refrigerant flow (VRF) heating and cooling system with optimal system parameter set-points. Two artificial neural network (ANN) models, which were respectively designed to predict the heating energy cost and cooling energy amount for upcoming next control cycle, was developed and embedded into the control algorithms. Performance of the algorithms were tested using the computer simulation programs - EnergyPlus, BCVTB, MATLAB in an incorporative manner. The results revealed that the proposed control algorithms remarkably saved the heating energy cost by as much as 7.93% and cooling energy consumption by as much as 28.44%, compared to a conventional control strategy. These findings support that the ANN-based predictive control algorithms showed potential for cost- and energy-effectiveness of VRF heating and cooling systems.

Application Study of the Predictive Pulse Control for Floor Heating System (바닥난방을 위한 부하 예측식 펄스제어 방식의 적용성 연구)

  • Cho, Sung-Hwan;Kim, Seong-Su;Kim, Yong-Bong;Na, Hee-Hyeong
    • Proceedings of the SAREK Conference
    • /
    • 2007.11a
    • /
    • pp.167-175
    • /
    • 2007
  • A predictive pulse control strategy as a means of improving the energy efficiency of radiant floor heating systems is explored. Experiments at the apartment with floor heating system are conducted to assess and compare the energy performance of the predictive pulse control strategy with an existing conventional control strategy. The Results showed that new suggested PPCM( Predictive Pulse Control Method) was available to decrease the gap of $1{\sim}1.5^{\circ}C$ between maximum and minimum indoor temperature of each rooms. Therefore PPCM method was favor to radiant floor heating system which have a delay time of 10-20 minutes for heat transfer by floor layers.

  • PDF

Control Characteristics with Flow Rate Control Methods in Central Heating System (중앙난방시스템의 유량제어방식에 따른 제어특성 연구)

  • Song, Jae-Yeob;Ahn, Byung-Cheon
    • Journal of the Korean Society for Geothermal and Hydrothermal Energy
    • /
    • v.7 no.1
    • /
    • pp.32-37
    • /
    • 2011
  • In this study, control characteristics and energy performance with flow rate control methods were reviewed with the simulation. The heating system is classified such as fan coil unit and HVAC system currently used in buildings with valve control and pump inverter control. The simulation analysis program is made by TRNSYS ver. 15 with the actual data. As a result of this study, the central heating system with pump inverter control decreases electricity energy and reduces gas consumption. Inverter control method shows better performance in comparison with valve control one for energy saving.

Active Solar Heating System Design & Analysis Program (설비형 태양열시스템 설계분석 프로그램 개발)

  • Shin, U-Cheul;Baek, Nam-Choon
    • Journal of the Korean Solar Energy Society
    • /
    • v.23 no.4
    • /
    • pp.11-20
    • /
    • 2003
  • This study aims to develop the program for active solar heating system design & analysis. The program, named ASOLis, is consisted of three user's interface like as system input/output, library, and utilities and used TRNSYS as a calculation engine for the system analysis. ASOLis simplifies user's input data through the database and can design 37 different types of solar systems. Solar system is configurated by two separated parts "solar thermal collecting part" and "load supplying part". Due to the user-friendly layout, all design parameters can be changed quickly and easily for the influence on system efficiency. For the reliability, ASOLis compared with experimental result. As a result, ASOLis is expected to be used as a vital tool for the design and analysis of active solar heating system.

A Study on the Individual Room Control of Radiant Floor Heating System in Apartment Buildings (공동주택에서 바닥복사 난방시스템의 실별 제어에 관한 연구)

  • 김오봉;이미경;김광우;여명석
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.16 no.5
    • /
    • pp.421-429
    • /
    • 2004
  • In Korea, the radiant heating system has been widely used as a residential heating method, which has been modernized to use hot water running into the tubes embedded in the floor structure. According to the recent improvement of living standard of residential buildings, the requirement of the thermal comfort and energy saving in heating system has been raised. Until now, the radiant floor heating system has been controlled by room thermostat installed in the living room, but for better thermal comfort, an individual room control method is adopted as an alternative. Therefore, it is necessary to evaluate the control performance between the current control method and the individual room control method. In this study, the control performance between the two systems is evaluated through the field experiment. And the control performances of room air temperature and energy performances are analyzed through the simulation using TRNSYS. Firstly, the simulations are performed in the various outdoor conditions and the flow rates and the simulation results are analyzed for the control performances. Also, to evaluate the energy performance, the simulations are performed under the operating conditions in which the set-point of the room air temperature is fixed or changed according to the schedule of occupancy, and the simulation results are analyzed between the two methods.

Estimation of Greenhouse Heating performance for Ground Filtration Water Source Heat Pump (강변여과수 열원 히트펌프 온실난방 성능시험)

  • Moon, Jongpil;Lee, Sunghyoun;Kwon, Jinkyung;Kang, YounKoo;Lee, Sujang
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2011.05a
    • /
    • pp.200.2-200.2
    • /
    • 2011
  • This study was carried out in order to estimate the greenhouse performance for Ground filtration water source heat pump which was installed for supplying the heat to the paprika greenhouse in Jinju city. Experimental area of Greenhouse was $3,300m^2$, For keeping the heat from greenhouse, single plastic covering and double thermal screen was installed. With considering all of greenhouse insulation condition and designed heatng temperature, heating capacity for experimental greenhouse was calculated as 320,000kcal/hr. Coefficient of performance(COP) of Ground filtration water source heat pump was gauged and greenhouse heating performance was tested from Febuary 1 to Febuary 28 in 2011. The result showed that COP of heat pump was in the range of 3.7~4.7 and COP of heating system was in the range of 3.0~3.5. The vaule of COP was very high and the temperature inside greenhouse was well corresponded to the setting temperature of greenhouse environment controlling system. lots of Ground filtration water made the the number of well fewer and the expense for installing heating system cheaper than that of geothermal system used custmarily. and this system went beyond the limitation of intaking amount of groundwater in normal Groundwater source heat pump.

  • PDF

Heating Effect of Greenhouse Cultivated Mangos by Heat Pump System using Underground Air as Heat Source (지하공기 이용 히트펌프시스템의 망고온실 난방효과)

  • Kang, Younkoo;Kim, Younghwa;Ryou, Youngsun;Kim, Jongkoo;Jang, Jaekyoung;Lee, Hyoungmo
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2011.05a
    • /
    • pp.200.1-200.1
    • /
    • 2011
  • Underground air is a special energy source in Jeju and distributes lava cave, pyroclastic, open joint, and crushing zone. A possible area to utilize underground air is 85% of Jeju except to the nearby area of Sambang Mt. and 25m high coastal area from sea level. In Jeju, underground air is used for heating agricultural facilities such as greenhouse cultivated mangos, Hallbong and mandarin orange, pigsty, mushroom cultivation house, etc. and fertilizing natural $CO_2$ gas by suppling directly into agricultural facilities. But this heating method causes several problem because the underground air has over 90% relative humidity and is inadequate in heating for crops. Mangos are the most widely grown tropical fruit trees and have been cultivated since 1993 in Jeju. In Jeju, the cultivating area is about 20ha and amount of harvest is 275ton/year in 2010. In this study, the heat pump system using underground air as heat source was installed in mangos greenhouse which area is $495m^2$. The capacity of heat pump system and heat storage tank was 10RT, 5ton respectively and heating effect and heating performance of the system were analysed.

  • PDF

An Experimental Study on the Characteristic of the Hot Water-Air Heating Generating System with a Solar Collector

  • Rokhman, Fatkhur;Hong, Boo-Pyo;You, Jin-Kwang;Yoon, Jung-In;Choi, Kwang-Hwan
    • 한국태양에너지학회:학술대회논문집
    • /
    • 2012.03a
    • /
    • pp.360-363
    • /
    • 2012
  • A solar air heating has low efficiency compared with the solar water heating because the heat capacity of the air is small. The heat received by solar collector plate is not fully transferred to the air and then a part of them became the losses to the environment through conduction and convection process. This research is focusing on a design of better combined multi-purposed system suggested by us and aims to secure the more efficient solar energy utilization by combining the hot water and air heating system. The result in this paper has shown that the proposed design has better thermal performance than that of the common design. Furthermore, it was found that the performance of the combined air - water heating system increases the efficiency from 30% to 35%-40%.

  • PDF

Development of Knowledge-based Method to Automatically Derive the Deformation Estimation Formula due to Line Heating (선상가열 변형예측식 자동 산출을 위한 지식기반 방법의 개발)

  • Lee, Joo-Sung
    • Journal of Welding and Joining
    • /
    • v.28 no.1
    • /
    • pp.92-99
    • /
    • 2010
  • For the last couple of decades many studies have been carried out to find out solutions to improve the effectiveness and productivity of the plate forming process. The practical way for the automation of the plate forming process has not been, however, developed yet. Since the characteristics of heating machines may be different form each other, it is necessary to investigate the thermal deformation characteristics of the heating machine to be used in the automation system. And their characteristics may be updated as new information about thermal deformation by heating is accumulated. In this paper, data base system has been constructed based on the results of experiments and numerical analyses, which will be used in deriving the deformation estimation formula. The computer code which can automatically derive the deformation estimation formula has been also developed. This paper also illustrates how the formula is updated as experimental data are added. From the present findings, it can be said that the automatic deriving procedure may be important in the automated plate forming system since the heating line information to be generated must be directly influenced by the deformation estimation formula.