• Title/Summary/Keyword: Heating Speed

Search Result 451, Processing Time 0.023 seconds

Double Diffusive Convection of a Stratified Fluid in a Rotating Annulus Due to Lateral Heating (환형용기내 성층화된 유체의 회전효과에 따른 이중확산대류에 관한 실험적 연구)

  • 강신형;전창덕;이진호
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.19 no.7
    • /
    • pp.1709-1719
    • /
    • 1995
  • The primary objective of the paper is to obtain the basic information of the natural convection of a stratified with various parametric conditions related to rotating speed, temperature and concentration gradient. For the purpose of it, experiments are performed in a stably stratified salt-water solution with lateral heating in a stationary or rotating annulus. The experiment covers the ranges of Ar=2, Le=100, R $a_{\ta}$=2 10$^{5}$ and Ta=0, 10$^{5}$ - 2.5*10$^{8}$ . Many interesting flow phenomena are observed and rotation effects are examined. Particularly as Taylor number increases (rotation increases) at a given R $a_{\ta}$, the generation of rolls at hot wall is inhibited and the formation and merging process of layers are delayed.

Modeling of GN type III with MDD for a thermoelectric solid subjected to a moving heat source

  • Ezzat, Magdy A.
    • Geomechanics and Engineering
    • /
    • v.23 no.4
    • /
    • pp.393-403
    • /
    • 2020
  • We design the Green-Naghdi model type III (GN-III) with widespread thermoelasticity for a thermoelectric half space using a memory-dependent derivative rule (MDD). Laplace transformations and state-space techniques are used in order to find the general solution for any set of limit conditions. A basic question of heat shock charging half space and a traction-free surface was added to the formulation in the present situation of a traveling heat source with consistent heating speed and ramp-type heating. The Laplace reverse transformations are numerically recorded. There are called the impacts of several calculations of the figure of the value, heat source spead, MDD parameters, magnetic number and the parameters of the ramping period.

An automated control system for concrete temperature development in construction

  • Qiang, Sheng;Leng, Xue-jun;Wang, Xiang-rong;Zhang, Jing-tao;Hua, Xia
    • Computers and Concrete
    • /
    • v.24 no.5
    • /
    • pp.437-444
    • /
    • 2019
  • PLC and its expansion module, electric ball valve and cooling pipe, electric heating steel plate and various components of the system, which is used to control test and process data. By automatically adjusting the opening of the valve, the system makes the top temperature and cooling speed develop along the ideal temperature diachronic curve. Moreover, the system enables the temperature difference between inside and surface of test block limited in a given range by automatically controlling the surface board heating. The method of physical simulation test by sandbox with built-in cooling water pipe and heating rod is adopted. On the premise of a given standard value, the operation of the system is checked under different working conditions. Further, an extension of this system is proposed, which enables its application to obtain some thermal parameters when cooperating with numerical simulation.

Speed Error Compensation By Rotor Resistance Estimation in Sensor-less Vector Control (속도센서없는 벡터제어시 회전자저항 추정에 의한 속도오차보상)

  • Kim, Joohn-Sheok;Mok, Hyung-Soo;Kim, Heui-Wook;Park, Min-Ho
    • Proceedings of the KIEE Conference
    • /
    • 1990.11a
    • /
    • pp.326-331
    • /
    • 1990
  • In the vector-controlled induction machine drive, mechanical sensors restrict the wide applications of high performance AC drives. So in resent years, many papers have been presented which doesn't need mechanical sensors, named by sensorless vector control. But sensorless control has a few serious problem, one of which Is poor speed estimation in case of incorrect rotor resistance (Rr) information. This paper describes the stator flux orientation speed control strategy with the speed estimation algorithm. and the method of adapting Rr change due to thermal heating. By proposed method. We can acquire precise speed estimation and higher performance.

  • PDF

Dependency on the Forming speed at the warm forming of magnesium sheet (마그네슘 판재 온간 딮드로잉성에서의 속도의존성)

  • Park, H.Y.;Lee, H.S.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2007.10a
    • /
    • pp.246-249
    • /
    • 2007
  • This study is concerned with deep drawability of magnesium sheets(AZ31B) at the warm conditions. Especially the dependency on forming speed has been investigated at the temperature of $200^{\circ}C$ and $300^{\circ}C$. Deep drawing test has been carried out at the temperature of $200^{\circ}C$ and $300^{\circ}C$. The die and blank holder are kept at test temperature by local heating and the punch is kept at room temperature by cooling technique. The magnesium sheets called AZ31B with the thickness of 0.5mm have been applied to deep drawing of circular cup. The drawability has been estimated at the conditions of forming speed (0.1, 1, 10 mm/sec). The results of deep drawing experiments show that the drawability is better at $300^{\circ}C$. Also the deep drawability is improved at the low speed(1mm/sec).

  • PDF

Fabriation of BMI Resin Composite for High Speed Train Transformer (변압기 권선 지지용 BMI 수지 복합재 제조 공정 개발)

  • 엄문광;김종훈;우재희;김세창
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2000.11a
    • /
    • pp.257-260
    • /
    • 2000
  • The composite composed of glass fabric and BMI resin was fabricated using resin transfer molding(RTM) process. it will be used as a supporting plate of transformer coil for high speed train. To develop a RTM process, permeability of preform was measured and resin properties like a viscosity and gellation time were checked. A resin pre-heating system and a mold system were also designed and developed. Using a vacuum-assisted RTM process, the composite supporting plate was successfully fabricated.

  • PDF

Electric Resistance Heated Friction Stir Spot Welding of Overlapped Al5052 Alloy Sheets (중첩된 알루미늄 5052 합금판재의 전기저항가열 마찰교반점용접에 관한 연구)

  • Kim, T.H.;Jang, M.S.;Jin, I.T.
    • Transactions of Materials Processing
    • /
    • v.24 no.4
    • /
    • pp.256-263
    • /
    • 2015
  • Electric resistance spot welding has been used to join overlapped steel sheets in automotive bodies. Recently to reduce weight in automotive vehicles, non-ferrous metals are being used or considered in car bodies for hoods, trunk lids, doors parts, etc. Various welding processes such as laser welding, self-piercing rivet, friction stir welding are being used. In the current study, a new electric resistance heated friction stir spot welding is suggested for the spot welding of non-ferrous metals. The welding method can be characterized by three uses of heat -- electric resistance heating, friction stir heating and conduction heating of steel electrodes -- for the fusion joining at the interfacial zone between the two sheets. The welding process has variables such as welding current, diameter of the steel electrodes, revolutions per minute (rpm) of the friction stir pin, and the insert depth of the stir pin. In order to obtain the optimal welding variables, which provide the best welding strength, many experiments were conducted. From the experiments, it was found that the welding strength could be reached to the required production value by using an electrode diameter of 10mm, a current of 7.6kA, a stirring speed of 400rpm, and an insert depth of 0.8mm for the electric resistance heated friction stir spot welding of 5052 aluminum 1.5mm sheets.

Performance Analysis of Water-to-Air Heat Pump System under Water Temperature and Load Ratio (열원 및 부하조건에 따른 물-공기 히트펌프 시스템의 성능분석)

  • Cho, Yong;Lee, Dong Keun
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2011.05a
    • /
    • pp.194.2-194.2
    • /
    • 2011
  • Heating and cooling performance has been analyzed for the water-source heat pump system using raw water from Daechung reservoir. During heating operation from March to May, water temperature is not good condition for a heat source due to the higher atmospheric temperature. Avearged heating load ratio is only 14.3%, and the averaged unit COP and system COP are estimated to be 2.46 and 2.15 respectively. The COP is affected considerably by the water temperature, and the unit COP is increased from 2.16 at $5^{\circ}C$ to 2.95 at $11^{\circ}C$. Cooling performance is analyzed with the measured data from June to August. During cooling operation, raw water has lower temperature by 4. $5^{\circ}C{\sim}4.7^{\circ}C$ than the atmosphere. The load ratio is 39.2%, and the averaged unit COP and system COP are estimated to be 7.25 and 6.13 respectively. The heating COP is affected by the load ratio rather than water temperature. The COP is increased for 20%~40% load ratio, while is decreased for 40%~60% load ratio. It is estimated that the compressor operation combination for 3 (two constant speed and one inverter) compressors is changed for the load ratio.

  • PDF

Experimental Study on the Performance Characteristics of a Simultaneous Heating and Cooling Heat Pump System at Each Operating Mode (동시냉난방 열펌프 시스템의 운전모드별 성능특성에 관한 실험적 연구)

  • Kang, Hoon;Lee, Sun-Il;Joo, Young-Ju;Chung, Hyun-Joon;Kim, Yong-Chan;Choi, Jong-Min
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.19 no.10
    • /
    • pp.679-686
    • /
    • 2007
  • The cooling load in winter season is significant in many commercial buildings and hotels because of the usage of office equipments and the high efficiency of wall insulation. The development of a multi-heat pump that can cover heating and cooling simultaneously for each indoor unit is required. In this study, a 4-room simultaneous heating and cooling heat pump system was designed and its performance was measured at each operating mode. The system used R-410A and adopted variable speed compressor. The problems on the designed system were analyzed and defined. In addition, the solutions of the problems were suggested to improve system efficiency and to obtain the stable operation.

Domestic Development of Vibrational Film Forming Machine and Die in the High Speed Production(II) - Multi-production forming machine - (고속 생산형 필름 진동판 성형기 및 금형 국산화 개발(II) - 다량 생산 진동판 성형기 -)

  • Kim, Jungl-Hyun
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.13 no.1
    • /
    • pp.52-58
    • /
    • 2014
  • This study consists of two parts. The first discusses the development of a single production forming machine which was reported in earlier papers. The second outlines the development of a multi-production forming machine, which consists primarily of a film feeding unit, an unwinding unit, and a heating block unit. The heating block unit of the multi-production forming machine has 30 members per die. An analysis of the stress deformation and temperature deviation of this machine is carried out using ANSYS Workbench and CFX-11 under the design conditions. According to this analysis, the maximum deflection in the Z-direction is $0.05104{\mu}m$ and the maximum temperature deviation is $0.7^{\circ}C$ when the temperature of the heating block unit is $175^{\circ}C$. It was also found that these values are structurally safe. The advantage of the developed multi-production forming machine is demonstrated to be in its offering of a proper voice test.