• Title/Summary/Keyword: Heating Experiment

Search Result 869, Processing Time 0.026 seconds

Study on the Conduction Heat Transfer Characteristics According to the Heating Temperature of Lightweight Panel Wall material (경량칸막이 벽체재료의 수열온도에 따른 전도 열전달 특성 연구)

  • Park, Sang-Min;Lee, Ho-Sung;Choi, Su-Gil;Kim, Si-Kuk
    • Fire Science and Engineering
    • /
    • v.32 no.1
    • /
    • pp.46-56
    • /
    • 2018
  • The paper relates to a study on the conduction heat transfer characteristics according to the heating temperature of lightweight panel wall material. Plywoods, marbles, heat resistant glasses, as well as general gypsum board and fire-proof gypsum board, which have been widely used for lightweight panel wall material, were selected as experiment samples, and heating temperatures were set as $100^{\circ}C$, $200^{\circ}C$, $300^{\circ}C$, $400^{\circ}C$, $500^{\circ}C$ and $600^{\circ}C$. Next, each of the heating temperatures were introduced on the bottom part of the wall material for 30 minutes, and analyses were made on the heat transfer characteristics to the backside part on the top part through conduction. As results of the experiment, the maximum backside temperatures were measured up to $190^{\circ}C$ for a general gypsum board, $198^{\circ}C$ for a fire-proof gypsum board, $189^{\circ}C$ for a plywood, $321^{\circ}C$ for a marble, and $418^{\circ}C$ for a heat resistant glass as heating temperatures were introduced maximum of $600^{\circ}C$. In addition, the maximum change rate of conduction heat transfer were measured up to 85 W for a general gypsum board, 95 W for a fire-proof gypsum board, 67 W for a plywood, 1686 W for a marble, and 3196 W for a heat resistant glass as the maximum heating temperatures were introduced up to $600^{\circ}C$. Also, carbonization characteristics of the wallpapers were measured to visually check the danger of conduction heat transfer, and the results showed that smokes were first generated on the attached wallpapers for the heating temperature $600^{\circ}C$, which were 1021 s for a general gypsum board, 978 s for a fire-proof gypsum board, 1395 s for a plywood, 167 s for a marble, and 20 s for a heat resistant glass, and that the first generation of carbonization were 1115 s for a general gypsum board, 1089 s for a fire-proof gypsum board, 1489 s for a plywood, 192 s for a marble, and 36 s for a heat resistant glass.

Heating Effect by Electric Radiator in Greenhouse of Chrysanthemum Cultivation (전기 방열기가 국화재배온실의 난방에 미치는 영향)

  • Suh, Won-Myung;Leem, Jae-Woon;Kim, Young-Ju;Min, Young-Bong;Kim, Hyeon-Tae;Huh, Moo-Ryong;Yoon, Yong-Cheol
    • Journal of agriculture & life science
    • /
    • v.44 no.4
    • /
    • pp.79-85
    • /
    • 2010
  • An analysis in heating effects of an electric radiator located in a 1-2W type chrysanthemum (3 cultivars) cultivation greenhouse installed in Gyeongsang National University drew the following conclusions. During the experiment period, the highest, average, and the lowest outside temperatures were in the ranges of $-3.8{\sim}21.3^{\circ}C$, $-5.2{\sim}16.1^{\circ}C$ and $-12.5{\sim}14.4^{\circ}C$, respectively, and the average relative humidity inside and outside the greenhouses were in the ranges of 43.5~98.6% and 35.2~100%, respectively. From mid-December to early February, the lowest outside temperature was recorded as approximately $-5.0{\sim}-10.0^{\circ}C$, which showed that it tended to be relatively lower than the temperatures recorded at the Jinju Meteorological Observatory. During the night, the leaf temperature measured directly under the radiator tended to be higher by $2{\sim}3^{\circ}C$ than that those at the middle point of the radiator, or higher by a negligible amount. In the case of root zone temperature, it was found that there was almost no difference between temperatures of the part directly under and the middle point, and the time when the highest temperature of root zone and other highest temperatures took place showed that there was about a 2-hour delay phenomenon. The total electricity consumption, energy supply and total heating cost during the experiment period were 2,800 kWh, 2,408,000 kcal and 112,000 won, respectively. When diesel, a kind of fossil fuel, was used as heating oil, the total heating cost was around 224,500 won. It was estimated that the total heating cost could be reduced by around 50% if a radiator was used.

A Study on the Analysis and the Improvement of Land and Sea Breeze Model Experiment suggested to 2009 Revised Elementary Science Curriculum (2009 개정 교육과정 초등과학에서 제시된 해륙풍 모형실험 분석 및 개선 방안)

  • Kang, Houn Tae;Lee, Gyuho;Noh, Suk Goo
    • Journal of Korean Elementary Science Education
    • /
    • v.36 no.1
    • /
    • pp.1-15
    • /
    • 2017
  • The purpose of this study is to analyze the problems of land and sea breeze model experiment that has presented in $5^{th}$ grade curriculum in chapter "Weather and our lives" and makes better model simulation so that learners can have better and more effective way to study it. To survey the opinions from dedicated teachers about land and sea breeze model experiment, we produced the survey through interview with science exclusive teacher from M elementary school. An elementary science education expert, 3 men of science EdD modified and complemented survey and started Delphi survey to 12 science teachers who have career teaching more than 3 years. The problems found in this survey were 'one heat bulb, short heating time, small temperature difference of water and sand, lack of class time, empty space between sand and water, back of transparent boxes, little amount of scent and the location of the it' etc. But the most of all, it is hard to see the successful result of the experiment. Based on these kinds of investigations, and lots of trial and error, redesigned the new model experiment that has the most similarity to the real one and high probability of success. According to this, it was able to see the smoke forms horizontal movement along the sand and the smoke goes in one circulation cycle. through this experiment, we made a conclusion that although those scientific experiments in textbook were developed through lots of considerations of expert, to consider the aspect of consumer, it needs to reach the educational agreement about simulation experiment so that It can lead to successful experiment and high quality education.

Sensitivity Analysis on KS and JIS Standard for Heat Recovery Ventilator (KS, JIS 열교환 환기장치 실험규격의 민감도 분석)

  • Yee Jurng-Jae;Ihm Pyeong-Chan;Kim Hwan-Yong
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.17 no.11
    • /
    • pp.998-1004
    • /
    • 2005
  • Recently natural ventilation rate is decreased due to the airtightness of apartment building. Therefore the use of heat recovery ventilator (HRV) has been greatly increased as an alternative method to supply fresh air and save energy in the building. In this research the experiment standard of HRV is compared between KS and JIS and the sensitivity analyses are experimented by both standards. Under cooling experiment condition indoor and outdoor wet-bulb temperature difference of JIS is 2 to 3 times higher than that of KS. It shows that the efficiency measurement of HRV by KS is expected to have greater sensitivity than by JIS and thus accurate measurement of web-bulb temperature is required. The experimental results provide that the efficiency of thermal exchange is resemblance to each others between KS and JIS. Under cooling experiment condition the efficiency of humidity exchange by KS presents higher than by JIS, however, under heating experiment condition the efficiency by KS shows lower than by JIS, reversely.

Extraction and Mixing Effects of Grape (Campbell) Seed Oil

  • Kang, Han-Chul;Min, Young-Kyoo;Hwang, Jong-Taek;Kim, Si-Dong;Kim, Tae-Su
    • Journal of Applied Biological Chemistry
    • /
    • v.42 no.4
    • /
    • pp.175-179
    • /
    • 1999
  • Grape seed oil was extracted using different preparatory treatments as follows: (1) grinding, (2) grinding and roasting, (3) grinding and wet- roasting, (4) grinding, roasting, and wet-roasting, and (5) grinding, wet-roasting, and wet-roasting. The highest antioxidant activity was obtained from the sample with the method (2). Initial states of oxidation were similar except method (1) that showed more oxidized state, being P.O.V.8. Acid values were observed in the range from 1.42 to 1.89. The lowest acid value was found as 1.42 in method (1) and those of others were somewhat higher, indicating that heating process of roasting produced some free fatty acids. From the results of sensory evaluation, the best odor and taste were obtained from the methods (2) and (3). Repetitive procedure of wet-roasting, like method 5, caused some loss of flavor components and decrease in the sensory evaluation score. Addition of grape seed oil (method 2) to soybean and perilla oil at the level of 20% retained considerable antioxidant activities as much as 4.3 and 5 times, respectively, than 100% soybean or perilla oil stored for 12 weeks. When soybean or perilla oil was mixed with 20% grape seed oils, P.O.V. decreased to half of that of unmixed oils.

  • PDF

Fundamental Study on the Limit of Thermographic Survey Applied to Detection of Void in Concrete (적외선법을 이용한 콘크리트 공동의 적용한계에 관한 기초적 연구)

  • ;Tanigawa Yasuo
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1999.04a
    • /
    • pp.799-806
    • /
    • 1999
  • This study describes the results of experiment and numerical analysis for heating image by thermographic method when the size of void in concrete are changed. By comparing analytical solution by finite element method with measured image by thermography, the relationships between the surface temperature which can be confirmed by this method, the size of void and optimum time for detection of void and the difference of temperature are cleared.

  • PDF

An Experimental Study on the Thermal Efficiency of the Ondol House Beating System (온돌의 열효율에 관한 실험적 연구)

  • Bae soonhoon;Kang Shin-Hyoung
    • The Magazine of the Society of Air-Conditioning and Refrigerating Engineers of Korea
    • /
    • v.4 no.3
    • /
    • pp.183-190
    • /
    • 1975
  • Most Korean houses are heated by the Ondol heating system. There has been, however, no reasonable design procedure availabe yet for the system. The conventional design should be improved to have auniform floor surface. temperature distribution and to have a high thermal efficiency. Thermal efficiencies of the ondol were defined and the method of experimentation was studied. An experiment, using a life-size model which was well insulated, was performed to observe the variation in thermal efficiency as the length of fuel burning time was varied.

  • PDF

Physicochemical Characteristics on Main and Fine root of Ginseng Dried by Various Temperature with Far-Infrared drier (원적외선 건조온도에 따른 백삼의 주근과 세근의 이화학적 특성)

  • Lee, Ka-Soon;Kim, Gwan-Hou;Kim, Hyun-Ho;Seong, Bong-Jae;Lee, Hee-Chul;Lee, Young-Gu
    • Korean Journal of Medicinal Crop Science
    • /
    • v.16 no.4
    • /
    • pp.211-217
    • /
    • 2008
  • To find up using of more efficient white ginseng, white ginseng was dried on various temperature (70, 80, 90,100, 110, 120, 130 and $140^{\circ}C$) with far-infrared drier and analyzed the composition of ginsenoside, carbohydrate, organic acid content and color. The type of ginseng shape was sliced and dried main and fine root, separately. As heating temperature increased, total ginsenoside content increased on main root, its content was the highest at $130^{\circ}C$, while decreased on fine root. Soluble carbohydrate content was the highest at $70^{\circ}C$ both on main and fine root. Increase of Re, Rc and Rb2 content was increased more high at $130^{\circ}C$, especially. But on fine root, content of Rg1, Rg3, Rf and Rb3 was increased and Re, Rc,Rb1 and Rb2 were decreased by the increased of temperature. As heating temperature increased, lightness of both main and fine root were decreased. Redness and yellowness of both main and fine root was increased to $120^{\circ}C$ and $100^{\circ}C$, respectively and decreased over this temperature.