• Title/Summary/Keyword: Heating Experiment

Search Result 869, Processing Time 0.023 seconds

A Study on the Change of Indoor Heating Environment with the Creation of Indoor Water Space through a Scale Model (축소모형을 이용한 실내 수공간 도입 효과 연구)

  • Oh, Sang Mok;Oh, Se Gyu
    • KIEAE Journal
    • /
    • v.10 no.6
    • /
    • pp.67-72
    • /
    • 2010
  • This study was conducted to examine the change of heating environment with the creation of an indoor water space. Living environments and comfort of dwellers can be improved by utilizing the physical properties of water effectively. This study focuses on the basic examination of the effect of water space and the environmental effects of water space by experiment. Two identical models were fabricated to compare the changes in indoor temperature and humidity with and without a water space. With the water space, temperature was reduced by an average of $0.55^{\circ}C$ a day and moisture content increased by an average of 4%. As a result, it was possible to obtain quantitative data on water space's temperature reduction and humidity control capacities. This study is expected to provide basic information for further studies on the effect of water spaces in various buildings.

Transient Creep Strain of Ultra High Strength Concrete with Heating and Loading (가열 및 하중조건에 따른 초고강도콘크리트의 과도변형)

  • Choe, Gyeong-Choel;Kim, Gyu-Yong;Yoon, Min-Ho;Lee, Young-Wook;Hwang, Ui-Chul;Yoo, Jae-Chul
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2015.05a
    • /
    • pp.59-60
    • /
    • 2015
  • In this study, stress-strain, thermal expansion strain, total strain and high temperature creep strain of ultra-high-strength concrete with compressive strengths of 80, 130, and 180MPa were experimentally evaluated considering elevated temperature and loading condition. Also, transient creep strain has been calculated by using the results of experiment. Experimental coefficient K was proposed with application of non-steady state creep model. It is considered that the experimental results of this study could be baseline data for deformation behavior analysis of ultra-high-strength concrete.

  • PDF

The thermal conductivity interpretation of the Concrete using Galerkin finite element method (갤러킨 유한요소해석 방법을 이용한 콘크리트의 열전도해석)

  • Lee, Kyu-Min;Seo, Dong-Goo;Kwon, Young-Jin
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2014.11a
    • /
    • pp.169-170
    • /
    • 2014
  • In this study, a general strength concrete member is produced and its hydrothermal temperature is measured. It is intended to present the basic data for establishment of fire resistance performance assessment and review of safety against fire by comparing the data values of slab fire resistance experiment and the numerical analysis model. The value obtained by measuring the hydrothermal temperature of the concrete after heating the concrete designed to have general strength (30 Mpa) for 3 hours in accordance with the ISO 834 Heating Curve is compared with the value obtained from a thermal conduction analysis. As a result of the comparison, though there is a little difference, it is thought that fire behaviors can be predicted in the future if the movement of moisture and the added evaporation speed are taken into account.

  • PDF

A Study on the Precise Measurement of the Performance in the Heating System (발열시스템 열적 성능의 정밀측정에 관한 연구)

  • 최창용;김홍건
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.11 no.6
    • /
    • pp.60-67
    • /
    • 2002
  • A precise measurement of field test was performed to estimate the thermal performance of the forced convection electric air heater by experiment. Air temperature, flow rate and electrical power input were measured with the related measurement sensors, and acquisition methods for the measured data were studied to estimate the thermal performance of the tested air heater effectively. To determine the mean air temperature at the flow cross-section, measuring positions were chosen by considering the flow velocity profile and the equally divided cross-sectional area. From the experimental results, thermal efficiency was obtained accurately as an indication of the tested heating system performance.

A Study on the Control of Solenoid Valve for Heating by using Power Line Communication (PLC) (전력선 통신을 이용한 난방용 솔레노이드밸브 제어에 관한 연구)

  • 신관우;김용태;이윤섭
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.9 no.8
    • /
    • pp.647-650
    • /
    • 2003
  • PLC (Power Line Communication) is the communication method using the existing power line installed in houses and offices to convert and transmit high frequency communication signal from tens of KHz to tens of MHz, and receive the filtered signal using high frequency filter The advantage of PLC is that PLC uses the existing power line installed in houses and offices so it does not require separate power line. Easy and convenient access using electric outlets is another advantage of PLC. However, PLC has some disadvantages such as limited transmission power, high load interference and noise, variable signal attenuation, characteristic of impedance, and selective possibility of frequency property. We designed the boiler temperature control system unit by using the PLC modem. We can avoid unnecessary heating of separate temperature control unit, and save the cost accordingly control stability of the proposed system is proven through the experiment.

A defect inspection method of the IH-JAR by statistical pattern recognition (통계적 패턴인식에 의한 유도가열 솥의 비파괴 불량 검사 방법)

  • Oh, Ki-Tae;Lee, Soon-Geul
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.6 no.1
    • /
    • pp.112-119
    • /
    • 2000
  • A die-casting junction method is usually used to manufacture the tub of an IH(induction heating) jar. If there is a very small air bubble in the junction area, the thermal conductivity is deteriorated and local overheat occurs. Such problem brings serious inferiority of the IH jar. In this paper, we propose a new method to detect such defect with simply measured thermal data. Thermal distribution of preheated tubs is obtained by scanning with infrared thermal sensors and analyzed with the statistic pattern recognition method. By defining the characteristic feature as the temperature difference between sensors and using ellipsoid function as decision boundary, a supervised learning method of genetic algorithm is proposed to obtain the required parpameters. After applying the proposed method to experiment, we have proved that the rate of recognition is high even for a small number of data set.

  • PDF

DISTRIBUTED CONTROL SYSTEM FOR KSTAR ICRF HEATING

  • Wang, Son-Jong;Kwak, Jong-Gu;Bae, Young-Dug;Kim, Sung-Kyu;Hwang, Churl-Kew
    • Nuclear Engineering and Technology
    • /
    • v.41 no.6
    • /
    • pp.807-812
    • /
    • 2009
  • An ICRF discharge cleaning and a fast wave electron heating experiment were performed. For automated operation and providing the diagnostics of the ICRF system, the ICRF local network was designed and implemented. This internal network provides monitoring, RF protection, remote control, and RF diagnostics. All the functions of the control system were realized by customized DSP units. The DSP units were tied by a local network in parallel. Owing to the distributed feature of the control system, the ICRF local control system is quite flexible to maintain. Developing the subsystem is a more effective approach compared to developing a large controller that governs the entire system. During the first experimental campaign of the KSTAR tokamak, the control system operated as expected without any major problems that would affect the tokamak operation. The transmitter was protected from harmful over-voltage events through reliable operation of the system.

Improvement on the Formability of Magnesium Alloy Sheet by Heating and Cooling Method (가열냉각법에 의한 마그네슘 합금의 판재 성형성 개선)

  • Kang, D.M.;Manabe, K.
    • Journal of Power System Engineering
    • /
    • v.9 no.3
    • /
    • pp.66-70
    • /
    • 2005
  • Structural components for aerospace, electronics and automobile industry are the main applications for magnesium alloys due to their lightweight and high specific strength. The adoption of magnesium alloys in sheet forming processes is still limited, due to their low formability at room temperature caused by the hexagonal crystal structure. In this paper, the authors aim to improve the formability of AZ31 magnesium alloy. For this, experiment and finite element analysis on used warm deep drawing process with a local heating and cooling technique were done. Both die and blank holder were heated at various warm temperature while the punch was kept at room temperature by cooling water.

  • PDF

Improvement on the formability of magnesium alloy sheet by heating and cooling method(II) (가열냉각법에 의한 마그네슘합금의 판재성형성개선(II))

  • Manabe K.;Kang Dae-Min
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2005.05a
    • /
    • pp.385-388
    • /
    • 2005
  • The use of magnesium alloys meets the need of reducing weight of componests(especially in automotive and aerospace industry) keeping unmodified their mechanical properties. The adoption of magnesium alloys in sheet forming processes is still limited, due to their low formability at room temperature caused by the hexagonal crystal structure. In this study, the authors aim to understand the process condition which can lead to a successful improvement in the formability of a magnesium alloy(AZ31). Experiment and simulations of deep drawing were doned at various warm temperature for the blank and tool(holde and die)while the punch was kept at room temperature by cooling wale. in order to confirm that the deep drawing performance of magnesium alloy can be considerably enhanced with using the local heating and cooling technique.

  • PDF

Cooling-Heating System Using Thermoelectric Module and Parallel Flow Type Pulsating Heat Pipe

  • Kim Jeong-Hoon;Im Yong-Bin;Lee Seong-Ho;Lee Euk-Soo;Kim Jong-Soo
    • International Journal of Air-Conditioning and Refrigeration
    • /
    • v.13 no.4
    • /
    • pp.217-224
    • /
    • 2005
  • The purpose of this study was to develop a cooler/heater using a thermoelectric module combined with a parallel flow type pulsating heat pipe with R-142b as a working fluid. The experiment was performed for 16 thermoelectric modules (6A/15V, size: $40\times40\times4mm$), varying design parameters of the heat pipe (inclination angle, working fluid charging ratio, etc.). Experimental results indicate that the optimum charging ratio and the inclination angle of the parallel flow type pulsating heat pipe were $30\%$ by volume and $30^{\circ}$, respectively. The maximum cooler/heater capacity were 479 W (COP: 0.47) and 630 W (COP: 0.9), respectively.