• Title/Summary/Keyword: Heating Electrode

Search Result 131, Processing Time 0.024 seconds

A Study on Estimation of Life-time under Semiconducting Layer/Needle Electrode in XLPE (반도전층/침전극하에서 XLPE의 수명시간예측)

  • Oh, Ja-Hyung;Kim, Sung-Tak;Park, Dae-Hee
    • Proceedings of the KIEE Conference
    • /
    • 1998.07d
    • /
    • pp.1475-1477
    • /
    • 1998
  • In this paper, breakdown strength and time to breakdown are experimented under semiconducting layer/needle electrode in XLPE which is used for power cable insulator. Shape and scale parameters of obtained data are estimated using 2-parameters Weibull distribution. Life-time coefficient(n-value) using shape parameters for breakdown strength and time to breakdown tests is estimated. n-value of 1000 hour aged XLPE showed higher value than that of virgin XLPE. Increase of n-value is estimated by the stability due to removal of by-product and residue gas in XLPE by heating.

  • PDF

Electrical Properties of Both a Monolayer at the Air/Water Interface and a Langmuir-Blodgett Film Sandwiched Between Aluminum Electrodes (수면상의 고분자막과 알루미늄 전자간의 Langmuir-Blodgett막에 대한 전기적 특성)

  • Mitsumasa Iwamoto;Kang, Dou-Yol
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.38 no.1
    • /
    • pp.35-42
    • /
    • 1989
  • Electrical properties of both a monolayer at the air/water interface and Langmuir-Blodgett films sandwiched between aluminum electrodes are studied using a current-measuring technique. A change in induced charges on an electrode suspended in the air was measured in combination with the surface area isotherm in the electrical measurement of the monolayer. A change in induced charges on an electrode is measured while heating the sample in the electrical measurement of the LB films. From both measurements, we elucidated that a spontaneous polarization plays very important role in the electrical properties of both a monolayer at the air/water interface and LB films sandwiched between aluminum electrodes.

Microwave-treated Expandable Graphite Granule for Enhancing the Bioelectricity Generation of Microbial Fuel Cells

  • Kim, Minsoo;Song, Young Eun;Li, Shuwei;Kim, Jung Rae
    • Journal of Electrochemical Science and Technology
    • /
    • v.12 no.3
    • /
    • pp.297-301
    • /
    • 2021
  • Microbial fuel cells (MFCs) convert chemical energy to electrical energy via electrochemically active microorganisms. The interactions between microbes and the surface of a carbon electrode play a vital role in capturing the respiratory electrons from bacteria. Therefore, improvements in the electrochemical and physicochemical properties of carbon materials are essential for increasing performance. In this study, a microwave and sulfuric acid treatment was used to modify the surface structure of graphite granules. The prepared expandable graphite granules (EGG) exhibited a 1.5 times higher power density than the unmodified graphite granules (1400 vs. 900 mW/m3). Scanning electron microscopy and Fourier transform infrared spectroscopy revealed improved physical and chemical characteristics of the EGG surface. These results suggest that physical and chemical surface modification using sulfuric acid and microwave heating improves the performance of electrode-based bioprocesses, such as MFCs.

COMPUTATIONAL MODELING AND SIMULATION OF METAL PLASMA GENERATION BETWEEN CYLINDRICAL ELECTRODES USING PULSED POWER (펄스파워를 이용한 실린더형 전극간 금속 플라즈마 생성현상의 전산유동해석)

  • Kim, K.;Kwak, H.S.;Park, J.Y.
    • Journal of computational fluids engineering
    • /
    • v.19 no.4
    • /
    • pp.68-74
    • /
    • 2014
  • This computational study features the transient compressible and inviscid flow analysis on a metallic plasma discharge from the opposing composite electrodes which is subjected to pulsed electric power. The computations have been performed using the flux corrected transport algorithm on the axisymmetric two-dimensional domain of electrode gap and outer space along with the calculation of plasma compositions and thermophysical properties such as plasma electrical conductivity. The mass ablation from aluminum electrode surfaces are modeled with radiative flux from plasma column experiencing intense Joule heating. The computational results shows the highly ionized and highly under-expanded supersonic plasma discharge with strong shock structure of Mach disk and blast wave propagation, which is very similar to muzzle blast or axial plasma jet flows. Also, the geometrical effects of composite electrodes are investigated to compare the amount of mass ablation and penetration depth of plasma discharge.

Silver Nanowire-Based Stretchable Transparent Electrodes for Deformable Organic Light-Emitting Diodes (신축성 유기발광다이오드를 위한 은 나노와이어 기반의 신축성 투명 전극 기판 연구)

  • Jung, Hyunsu;Go, Hyeck;Park, Gye-Choon;Yun, Changhun
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.30 no.10
    • /
    • pp.609-614
    • /
    • 2017
  • The proposed stretchable transparent electrodes based on silver nanowires (AgNWs) were prepared on a polyurethane (PU) substrate. In order toavoid the surface roughness caused by the silver nanowires, a titanium oxide ($TiO_2$) buffer layer was addedby coating and heating the organometallic sol-gel solution. The fabricated stretchable electrodes showedan electrical sheet resistance of $24{\Omega}sq^{-1}$, 78% transmittance at 550 nm, and an average surface roughness below 5 nm. Furthermore, the AgNW-based electrode maintained its initial electrical resistance under 130% strain testing conditions, without the assistance of additional conductive polymer layers. In this paper, the critical role of the $TiO_2$ buffer layer between the AgNW network and the PU substrate has been discussed.

Neutral Beam assisted Chemical Vapor Deposition at Low Temperature for n-type Doped nano-crystalline silicon Thin Film

  • Jang, Jin-Nyeong;Lee, Dong-Hyeok;So, Hyeon-Uk;Yu, Seok-Jae;Lee, Bong-Ju;Hong, Mun-Pyo
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.02a
    • /
    • pp.52-52
    • /
    • 2011
  • A novel deposition process for n-type nanocrystalline silicon (n-type nc-Si) thin films at room temperature has been developed by adopting the neutral beam assisted chemical vapor deposition (NBa-CVD). During formation of n-type nc-Si thin film by the NBa-CVD process with silicon reflector electrode at room temperature, the energetic particles could induce enhance doping efficiency and crystalline phase in polymorphous-Si thin films without additional heating on substrate; The dark conductivity and substrate temperature of P-doped polymorphous~nano crystalline silicon thin films increased with increasing the reflector bias. The NB energy heating substrate(but lower than $80^{\circ}C$ and increase doping efficiency. This low temperature processed doped nano-crystalline can address key problem in applications from flexible display backplane thin film transistor to flexible solar cell.

  • PDF

A Study on the heating conditions affect on the insulation characteristics of polyamid papers (가열조건이 폴리아미드지의 절연특성에 미치는 영향)

  • Sun, J.H.;Kim, W.S.;Kim, K.H.
    • Proceedings of the KIEE Conference
    • /
    • 2000.07c
    • /
    • pp.2047-2049
    • /
    • 2000
  • In this study, we describe comparison of insulation characteristics of polyamid papers with heating conditions. The partial discharge behavior until breakdown and breakdown strength for thermal degradation films are observed in $SF_6$ gas chamber. The four layered NOMEX films of thickness of 50${\mu}m$ were used as solid insulation films and the sphere of which diameter is 40mm to sphere electrode system was used and each insulation films were inserted between sphere electrodes. The used gas pressure was 1.0bar and used temperature was each of 250$^{\circ}C$, 270$^{\circ}C$, 300$^{\circ}C$, 320$^{\circ}C$, 350$^{\circ}C$ and the voltage were applied until breakdown films.

  • PDF

Development of Uniform Ag Electrode and Heating Sensors Using Inkjet Printing Technology (잉크젯 프린팅 기술을 이용한 Ag 전극 균일성 및 발열 센서 연구)

  • Gun Woong Kim;Jaebum Jeong;Jin Ho Park;Woo Jin Jeong;Jun Young Kim
    • Journal of Sensor Science and Technology
    • /
    • v.33 no.1
    • /
    • pp.24-29
    • /
    • 2024
  • Inkjet printing technology is used to mass-produce displays and electrochemical sensors by dropping tens of pico-liters or less of specific-purpose ink through nozzles, just as ink is sprayed and printed on paper. Unlike the deposition method for vaporizing material in a vacuum, inkjet printing technology can be used for processing even under general atmospheric pressure and has a cost advantage because the material is dissolved in a solvent and used in the form of ink. In addition, because it can only be printed on the desired part, masks are not required. However, a technical shortcoming is the difficulty for commercialization, such as uniformity for forming the thickness and coffee ring effect. As sizes of devices decrease, the need to print electrodes with precision, thinness, and uniformity increases. In this study, we improved the printing and processing conditions to form a homogeneous electrode using Ag ink (DGP-45LT-15C) and applied this for patterning to fabricate a heat sensor. Upon the application of voltage to the heat sensor, the model with an extended width exhibited superior heat performance. However, in terms of sheet resistance, the model yielded an equivalent value of 21.6 Ω/□ compared to the ITO.

A Study on Resistance Spot Welding of Dissimilar Sheet Metals(Aluminum Alloy - Steel Sheets) (이종재료(알루미늄합금-강판)의 저항 점용접에 관한 연구)

  • 손병천;우승엽;이재범;최용범;장희석
    • Journal of Welding and Joining
    • /
    • v.15 no.4
    • /
    • pp.42-62
    • /
    • 1997
  • Resistance spot welding has been widely used in the sheet metal joining processes because of its high productivity and convenience. Recently, automobile industries are trying to replace partly steel sheets with aluminum alloy sheets. Among currently produced aluminum alloys, Al alloy sheets of Al-Mg-Si(6000 series) are being tested. Especially, 6000 series are the most probable substitute in view of strength and weldability. In this paper, an attempt was made to apply resistance spot welding to joining of dissimilar sheet metals (KS6383+SCPZn or KS6383+SHCP). An effort was made to balance heating rate in the Al alloy with that in the steel sheets by increasing electrode tip diameter. Although resistance spot welding of Al alloy sheet and sheet metals does not produce desirable nugget, it proved to have reasonable strength if optimal weld condition is found by tensile-shear strength and fatigue life test. Since spot weld joints in automobile are always experiencing repeated load, spot welding methodology proposed in this paper is found to be not suitable to automobile body manufacturing.

  • PDF

A Study of Photo-electric Efficiency Improvement using Ultrasonic and Thermal Treatment on Photo-electrode of DSC (염료감응형 태양전지 광전극의 초음파 열처리를 통한 광전효율 개선에 관한 연구)

  • Kim, Hee-Je;Kim, Yong-Chul;Choi, Jin-Young;Kim, Ho-Sung;Lee, Dong-Gil;Hong, Ji-Tae
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.57 no.5
    • /
    • pp.803-807
    • /
    • 2008
  • A making process of DSC(dye sensitized solar cell) was presented. In general, Photo electrodes of DSC was made by using colloid paste of nano $TiO_2$ and processing of Doctor-blade printing and high temperature sintering for porous structure. These methods lead to cracks on $TiO_2$ surface and ununiform of $TiO_2$ thickness. This phenomenon is one factor that makes low efficiency to cells. After $TiO_2$ printing on TCO glass, a physical vibration was adapted for reducing ununiform of $TiO_2$ thickness. And a thermal treatment at low temperature(under $75^{\circ}C$) was adapted for reducing cracks on $TiO_2$ surface. In this paper, we have designed and manufactured an ultrasonic circuit (100W, frequency and duty variable) and a thermal equipment. Then, we have optimized forcing time, frequency and duty of ultrasonic irradiation and thermal heating for surface treatment of photo-electrode of DSC. In I-V characteristic test of DSC, ultrasonic and thermal treated DSC shows 19% improved its efficiency against monolithic DSC. And it shows stability of light-harvesting from drastically change of light irradiation test.