• Title/Summary/Keyword: Heating&cooling load

Search Result 386, Processing Time 0.026 seconds

Development of Load Prediction Equations of Office Buildings

  • Seok, Ho-Tae;Kim, Kwang-Woo
    • International Journal of Air-Conditioning and Refrigeration
    • /
    • v.10 no.2
    • /
    • pp.65-71
    • /
    • 2002
  • The objective of this study is to evaluate the design parameters and to develop the cooling and heating load prediction equations of office buildings. The building load calculation simulation was carried out using the DOE-2.1E program. The results of the simulation were used as data for multiple regression analysis which could develop the load prediction equations.

Thermal Performance Evaluation of Design Parameters and Development of Load Prediction Equations of Office Buildings (사무소 건설의 설계변수 열성능 평가 및 부하예측방정식 개발)

  • 석호태;김광우
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.13 no.9
    • /
    • pp.914-921
    • /
    • 2001
  • The objective of this study is to evaluate the design parameters and to develop the cooling and heating load prediction equations of office buildings. The building load calculation simulation was carried out using the DOE-2.1E program. The results of the simulation was used as a data for ANOVA and multiple regression analysis which could develop the load prediction equations.

  • PDF

The Improvement of Building Envelope Performance in Existing School Building (기존 학교 건물의 외피 성능 개선 방안에 관한 연구)

  • Bang, Ah-Young;Park, Se-Hyeon;Kim, Jin-Hee;Kim, Young-Jae;Kim, Jun-Tae
    • KIEAE Journal
    • /
    • v.15 no.4
    • /
    • pp.69-76
    • /
    • 2015
  • Purpose: This study is to investigate the effects of facade insulation and window remodeling of an existing old middle school building on the reduction of energy consumption. Method: To analyze energy performance of building, using DesignBuilder v3.4, building energy simulation tool based EnergyPlus engine. Energy consumption and problem of target building was analyzed based on data and survey. Based on building energy simulations it analyzed the variation of energy demand for the building according to U-value of wall, glazing properties and external shading devices. Result: When insulation of building was reinforced, cooling and heating load was decreased. Glazing properties that minimize cooling and heating energy consumption were analyzed. In conclusion, it is important to choose SHGC and U-value of window fit in characteristic of target building. Setting external blind for cooling load decreases 5%.

An Analysis of Heating and Cooling Energy Cost according to Building Type of Apartment Complex (공동주택 단지의 주동형식에 따른 냉난방 에너지 비용 분석)

  • Roh, Ji-Woon
    • Journal of the Korean Solar Energy Society
    • /
    • v.33 no.1
    • /
    • pp.96-105
    • /
    • 2013
  • This study aims to investigate the energy performance of apartment in respect of complex design, building type and generation house layout and finally to produce the guide line for energy saving design. To grasp the present condition and problem about this subject, apartment building types were examined and representative types were extracted. Considering azimuth angle, private area, and generation number, building type of the subject apartment was classified in detail, energy simulation was conducted, and the effect to energy cost was compared. In the research, using VE energy simulation program, the heating and cooling load were calculated and converted to energy cost. It is expected that this analysed results will be basic data for the more integrated study. Research consequence can be summarized as follow: 1) Energy cost is compared according to several azimuth in plank '一' type apartment. As the results, calculated gas cost is the best in $49^{\circ}$, but total cost is in $-31^{\circ}$. 2) Apartment buildings of tower types are compared, it is resulted that 'Y' type (azimuth $-7^{\circ}$, $-20^{\circ}$) is the best in gas cost, but the total cost is worst because of high cooling load.

A Study on the Perfomance Analysis of Low Energy Cooling Systems in Office building (사무소건물의 에너지절약형 냉방시스템 성능분석에 관한 연구)

  • Park, Chang-Bong;Rhee, Eon-Gu
    • Journal of the Korean Solar Energy Society
    • /
    • v.30 no.6
    • /
    • pp.89-94
    • /
    • 2010
  • A large portion of the energy cost of a building is cooling and heating to maintain a comfortable indoor environment. Air conditioning is now one of the important parts in the building design, as increase in energy consumption and pollutant emission in energy conversion process. In this study, elements that affects the energy consumption of model building are identified and the perfomance analysis of the alternative a Low Energy Cooling Systems considering characteristics of model building and energy saving performance is analyzed. In this study, elements that affect the energy consumption of office building are identified and energy saving performance of the alternative air conditioning system is analyzed. As a result, applied to earn and suggest basic data for energy saving measures. In this study, EnergyPlus simulation program was used to evaluate the energy load when alternative Low Energy Cooling Systems are applied to the model building. The reliability of simulation program is verified by comparing actual energy load from operation data of building management office and predicted energy load using simulation program. For Low Energy Cooling System application which considers the purpose and characteristics of the building, reasonable and energy-saving air conditioning method obtained by analyzing energy consumption elements for each expected air conditioning methods is used to deduct result of this study.

Prediction of the Amount of Energy Consumption by Variation in Envelope Insulation on a Detached House in Southern Part of Korea (남부지역 주거건물의 외피단열변화에 따른 에너지소비량 예측)

  • Moon, Jin-Woo;Han, Seung-Hoon;Oh, Sai-Gyu
    • Journal of the Korean housing association
    • /
    • v.22 no.1
    • /
    • pp.115-122
    • /
    • 2011
  • This study aimed at quantifying the impact of envelope insulation on energy consumption for thermal controls in residential buildings in southern part of Korea. A series of parametric simulations for a range of R-values of walls, roof, floor, and windows were computationally conducted for a prototypical Korean detached house. Analysis revealed that the total amount of heat gain was larger than that of heat loss, while the amount of energy for cooling was smaller than that for heating due to the difference of system efficiency; the envelope heat transfer was more significant for the heat loss, thus, the increase of the envelope insulation was more effective to reduce heating load; and there were certain levels of envelope insulation after which the energy saving effect was not significant. These findings are expected to be a fundamental database for the decision of proper insulation level in Korean residential buildings.

Heating Performance of a Ground Source Multi-Heat Pump for a Greenhouse (지열원 멀티 열펌프 시스템의 시설원예 적용 난방성능 특성 실증 연구)

  • Kang, Shin-Hyung;Choi, Jong-Min;Moon, Je-Myung;Kwon, Hyung-Jin
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.22 no.6
    • /
    • pp.337-344
    • /
    • 2010
  • Good plant-growth conditions can be achieved by means of using greenhouses. One of the main issues in greenhouse cultivation is energy savings through the development of high efficient heating and cooling system. GSHPs are one of the recommended systems to cope with this pending need. The aim of this study is to investigate the heating performance of ground source multi-heat pump system installed in a greenhouse under part load conditions. Daily average heating COP of the heat pump unit was very high by at least 7.4, because of relatively large condenser, evaporator, and mass flow rate through ground loop heat exchanger. However, the system COP, overall heating coefficient of the performance of the system with heat pump unit and GLHX, decreased drastically due to relatively large power consumption of circulating pump under part load condition. It is suggested that the technology to enhance the performance of the ground source multi-heat pump system for a greenhouse under part load conditions should be developed.

Blind Optimal Operating Schedule for Reviewing the Energy Load Reduction of Apartment House (공동주택의 에너지 부하량 저감을 위한 블라인드 운영스케줄 검토)

  • Ma, Jun-ChaO;Lee, Jun-Gi;Kim, Sung-Hoon;Lee, Gab-Taek;Lee, Kyung-Hee
    • Journal of Power System Engineering
    • /
    • v.20 no.4
    • /
    • pp.63-68
    • /
    • 2016
  • In this study, through portion of the blind control which the user can adjust the deration and the main loads, night for energy reduction during the review of the energy difference between the cooling and heating load periods in order to present the best operation schedules of the blind control. The result, Cooling period, the venetian blind is installed the day or the day and night CASE adjusted to $0^{\circ}$ was identified as optimal for the operating schedule. Heating period, the day, without installed the blinds, the Venetian blind is installed only at night CASE adjusted to $0^{\circ}$ or $45^{\circ}$ angle of the slats, which have been identified as optimal for the operating schedule.

A Study on Thermal Performance Analysis of the Sustainable Clayed Hollow Block Wall (친환경 점토질 다공블럭 벽체의 열성능 분석 연구)

  • Jang, Yong-Sung;Park, Hyo-Soon
    • KIEAE Journal
    • /
    • v.4 no.3
    • /
    • pp.65-70
    • /
    • 2004
  • The purpose of this study is to analysis the thermal performance of the clayed hollow block wall. Its thermal performance was evaluated comparison with the cement block wall, it was generally used in building envelope. To that end, we conducted a insulation performance experiment and heating and cooling load simulation for a respective wall. In addition, we calculated a construction cost for each other's wall. The results of this study can be summarized as follows. (1) According to experiment of a insulation performance, coefficient of overall heat transmission of the cement block wall and clayed hollow block wall was calculated respectively $2.72W/^2K$ and $1.42W/^2K$. (2) The annular load saving of the clayed hollow block wall was evaluated 1.5% larger than its of the cement block wall. (3) The construction cost of the clayed hollow block wall was calculated 73% more expensive than its of the cement block wall. (4) The construction cost of the clayed hollow block composite wall was calculated 13.7% more expensive than its of the cement block composite wall.

EA Study on the Operation Performance of Central Plant Equipment According to Part Load Characteristics (부분부하 특성을 고려한 열원기기의 운전성능 평가)

  • Lee, Wang-Je;Kang, Eun-Chul;Lee, Euy-Joon;Oh, Byung-Chil;Shin, U-Cheul
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.25 no.7
    • /
    • pp.392-397
    • /
    • 2013
  • To fulfill the demands concerning energy efficiency for zero energy buildings, various technologies of architects and engineers are required. This study aims to estimate the thermal performance of heat source equipment in which part load characteristics are considered in an office building. Overestimation of heat source equipment was reviewed through literature survey, and heating and cooling loads depending on the capacity and division of the equipment were analyzed through a simulation program (DOE-2.1E). The conclusions gained from this study are as follows; 1) The more the division of equipment, the less the heating and cooling energy consumption. 2) When a large item of equipment is divided into two small items of equipment, the optimum application rate showed as 5:5 for chiller, and 7:3 for boiler, respectively.