• Title/Summary/Keyword: Heated concrete

Search Result 121, Processing Time 0.032 seconds

An Experimental study on Reducing Effect of Explosive spalling by fiber Addition Ratio and Kinds of fiber at high performance Concrete (섬유 종류 및 혼입률에 따른 고성능 콘크리트의 폭열저감 효과에 관한 실험적 연구)

  • Jang Jea bong;Na Chul sung;Kim Young Duck;Kim Jae Hwan;Kwon Young Jin;Kim Moo-Han
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2005.05b
    • /
    • pp.521-524
    • /
    • 2005
  • This study is an experiment for reducing effect of explosive spalling by fiber addition ratio and kinds of fiber at high performance concrete. So, high strength concrete were made addition to PVA and PP fiber as diameter of 34, 100 $\mu$m and 40 $\mu$m by fiber addition ratio as 0.05, 0.1, 0.3$\%$. After those were heated respectively for 30 in accordance with Standard Time-Temperature Curve. And then conditions of explosive spalling were divided into four grades, and characters of explosive spalling were investigated.

  • PDF

Non-destructive evaluation technology using infrared thermography and near infrared heating for detecting inside-defects of concrete structures (근적외선과 열화상 기법을 이용한 콘크리트 내부 공극 검출)

  • Sim, Jun-Gi;Zi, Goang-Seup;Lee, Jong-Seh
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.04a
    • /
    • pp.1021-1024
    • /
    • 2008
  • Near infrared heating as an alternative to the conventional heating techniques for thermography -NDT is tried in this paper. A concrete specimen containing a defect was heated by the near infrared ray and the thermography-NDT technique was applied. Using a dimensinless temperature, the defects were detected. It was found that the near infrared ray could efficiently heat up the concrete specimen compared to others conventional methods like lamps, heat flow, etc.

  • PDF

Analysis of Decontamination from Concrete by Microwave Power

  • Zi, Goang-Seup
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2004.11a
    • /
    • pp.603-608
    • /
    • 2004
  • The paper analyzes a scheme of decontamination of radionuclides from concrete structures, in which rapid microwave heating is used to spall off a thin contaminated surface layer. The analysis is split in two parts: (1) The hygrothermal part of the problem, which consists in calculating the evolution of the temperature and pore pressure fields, and (2) the fracturing part, which consists in predicting the stresses, deformations and fracturing. The rate of the distributed source of heat due to microwaves in concrete is calculated on the basis of the standing wave normally incident to the concrete wall with averaging over both the time period and the wavelength because of the very short time period of microwaves compared to the period of temperature waves and the heterogeneity of concrete. The reinforcing bars parallel to the surface arc treated as a smeared steel layer. The microplane model M4 is used as the constitutive model for nonlinear deformation and distributed fracturing of concrete. The aim of this study is to determine the required microwave power and predict whether and when the contaminated surface layer of concrete spalls off. The effects of wall thickness, reinforcing bars, microwave frequencies and power are studied numerically. As a byproduct of this analysis, the mechanism of spalling of rapidly heated concrete is clarified.

  • PDF

Material Properties of Concrete Specimens with Electric Arc Furnace Dust as Admixture (전기로제강분진(EAF Dust)을 혼화재로 배합한 콘크리트 공시체의 재료특성)

  • 김장호;김석호;김성훈;김동완
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2001.11a
    • /
    • pp.669-674
    • /
    • 2001
  • Electric Arc Furnace Dust (EAF Dust) Is residual dust produced during the manufacturing of metal products from heavily heated electric arc furnace. Many researches have focused on recycling and reusing EAF Dust for industrial and construction purposes. However, most of these researches were aimed at obtaining useful heavy metal powders by treating toxic metallic materials in EAF Dust. Also, few researches dealt with using EAF Dust as admixture in concrete mixture (i.e., slag dust). In this study, EAF Dust is used as admixture in concrete mixture content considering economical feasibility and construction applicability. The concrete specimens mixed with EAF Dust is then tested in compression and tension to study its strength and ductility as well as its failure mechanism. The compression and tension (by split cylinder test) test results are compared to the results from the specimens without EAF Dust to understand the chemical stability and mechanical characteristic of concrete specimens with EAF Dust. For the experiment, 6 types of admixture added concrete were studied: ⑴Combination of EAF Dust and blast-furnace slag in 1 to 1 ratio, ⑵Combination of EAF Dust and blast-furnace slag in 1 to 2 ratio, ⑶EAF Dust only, ⑷blast-furnace slag only, ⑸fly ash only, and ⑹no admixture. The experimental results show that the strength of EAF Dust added specimen has lower early age strength but higher 28 day strength when compared to other specimens. Also, the Elastic Modulus of EAF Dust is higher(28 days) than other specimens. The study results prove that EAF Dust can be used as an effective admixture in concrete for specific usages.

  • PDF

Heat Transfer Modeling of Fiber-embedded Fire-Resistant High Strength Concrete (섬유혼입 내화 고강도 콘크리트의 열전달 모델)

  • Shin, Young-Sub;Han, Tong-Seok;Youm, Kwang-Soo;Jeon, Hyun-Kyu
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.24 no.2
    • /
    • pp.133-140
    • /
    • 2011
  • High strength concrete used for large structures is vulnerable to fire due to explosive spalling when it is heated. Recently, various research is conducted to enhance the fire-resistance of the high strength concrete by reducing the explosive spalling at the elevated temperature. In this study, a heat transfer analysis model is proposed for a fiber-embedded fire-resistant high strength concrete. The material model of the fire-resistant high strength concrete is selected from the calibrated material model of a high strength concrete incorporating thermal properties of fibers and physical behavior of internal concrete at the elevated temperature. By comparing the simulated results using the calibrated model with the experimental results, the heat transfer model of the fiber-embedded fire-resistant high strength concrete is proposed.

Effect of silica fume content in concrete blocks on laser-induced explosive spalling behavior

  • Seong Y. Oh;Gwon Lim;Sungmo Nam;Byung-Seon Choi;Taek Soo Kim;Hyunmin Park
    • Nuclear Engineering and Technology
    • /
    • v.55 no.6
    • /
    • pp.1988-1993
    • /
    • 2023
  • This experimental study investigated the effect of silica fume mixed in concrete blocks on laser-induced explosion behavior. We used a 5.3 kW fiber laser as a thermal source to induce explosive spalling on a concrete surface blended with and without silica fume. An analytical approach based on the difference in the removal rate and thermal behavior was used to determine the effect of silica fume on laser-induced explosive spalling. A scanner was employed to calculate the laser-scabbled volume of the concrete surface to derive the removal rate. The removal rate of the concrete mixed with silica fume was higher than that of without silica fume. Thermal images acquired during scabbling were used to qualitatively analyze the thermal response of laser-induced explosive spalling on the concrete surface. At the early stage of laser heating, an uneven spatial distribution of surface temperature appeared on the concrete blended with silica fume because of frequent explosive spalling within a small area. By contrast, the spalling frequency was relatively lower in laser-heated concrete without silica fume. Furthermore, we observed that a larger area was removed via a single explosive spalling event owing to its high porosity.

Strength Characteristic and Phenomenon of Heated Concrete by High Temperature (고온가열 콘크리트의 강도 특성과 현상)

  • 태순호;이병곤
    • Journal of the Korean Society of Safety
    • /
    • v.12 no.3
    • /
    • pp.132-138
    • /
    • 1997
  • For many years concrete has been the major building material for most construction. It is of primary importance that fire fighters or fire investigators have a full understanding of the properties of concrete so that better control of the fire scene is achieved. This, in turn, not only help to ensure a safer fire-fighting job but also a more successful fire investigation. So far as the fire scene investigation in concerned, knowledge about the thermal behaviour of concrete can help the investigators to determine the highest temperature that a particular spot of a fire scene has ever reached thereby providing data which may be of value in reconstructing the course of the fire.

  • PDF

Post-heating behavior of concrete beams reinforced with fiber reinforced polymer bars

  • Irshidat, Mohammad R.;Haddad, Rami H.;Almahmoud, Hanadi
    • Structural Engineering and Mechanics
    • /
    • v.53 no.6
    • /
    • pp.1253-1269
    • /
    • 2015
  • The present paper investigates the post heating behavior of concrete beams reinforced with fiber reinforced polymer (FRP) bars, namely carbon fiber reinforced polymer (CFRP) bars and glass fiber reinforced polymer (GFRP) bars. Thirty rectangular concrete beams were prepared and cured for 28 days. Then, beams were either subjected (in duplicates) to elevated temperatures in the range (100 to $500^{\circ}C$) or left at room temperature before tested under four point loading for flexural response. Experimental results showed that beams, reinforced with CFRP and GFRP bars and subjected to temperatures below $300^{\circ}C$, showed better mechanical performance than that of corresponding ones with conventional reinforcing steel bars. The results also revealed that ultimate load capacity and stiffness pertaining to beams with FRP reinforcement decreased, yet their ultimate deflection and toughness increased with higher temperatures. All beams reinforced with FRP materials, except those post-heated to $500^{\circ}C$, failed by concrete crushing followed by tension failure of FRP bars.

Numeric simulation of near-surface moisture migration and stress development in concrete exposed to fire

  • Consolazio, Gary R.;Chung, Jae H.
    • Computers and Concrete
    • /
    • v.1 no.1
    • /
    • pp.31-46
    • /
    • 2004
  • A methodology is presented for computing stresses in structural concrete members exposed to fire. Coupled heat and moisture migration simulations are used to establish temperature, pore pressure, and liquid-saturation state variables within near-surface zones of heated concrete members. Particular attention is placed on the use of coupled heat and multiphase fluid flow simulations to study phenomena such as moisture-clogging. Once the state variables are determined, a procedure for combining the effects of thermal dilation, mechanical loads, pore pressure, and boundary conditions is proposed and demonstrated. Combined stresses are computed for varying displacement boundary conditions using data obtained from coupled heat and moisture flow simulations. These stresses are then compared to stresses computed from thermal analyses in which moisture effects are omitted. The results demonstrate that moisture migration has a significant influence on the development of thermal stresses.