• Title/Summary/Keyword: Heat-up time

Search Result 574, Processing Time 0.024 seconds

Nondestructive Evaluation for Long-term Heat Treatment Effects on Microstructure of Co-base Superalloy by Scanning Acoustic Microscope (주사음향현미경을 이용한 코발트기 초내열합금 미세조직에 관한 장시간 열영향에 대한 비파괴평가)

  • lEE, JoonHee;Kim, ChungSeok
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.32 no.3
    • /
    • pp.118-123
    • /
    • 2019
  • The aim of this study investigates the feasibility of scanning acoustic microscope (SAM) with high frequency transducer for material degradation. The test specimen was prepared by artificial heat treatment of Co-base superalloy. The high frequency 200 MHz acoustic lens was used to generate the leaky surface acoustic wave (LSAW) on the test specimens. The matrix precipitates coarsened with thermal aging time, and then grow up to several tens of micrometers. The velocity of LSAW decreased with increasing aging time. Also, it has a good correlation between LSAW and hardness. Consequently, V(z) curve methods of SAM using high frequency transducer is useful tool to evaluate the heat treatment effects on microstructure.

HEAT-UP AND COOL-DOWN TEMPERATURE-DEPENDENT HYDRIDE REORIENTATION BEHAVIORS IN ZIRCONIUM ALLOY CLADDING TUBES

  • Won, Ju-Jin;Kim, Myeong-Su;Kim, Kyu-Tae
    • Nuclear Engineering and Technology
    • /
    • v.46 no.5
    • /
    • pp.681-688
    • /
    • 2014
  • Hydride reorientation behaviors of PWR cladding tubes under typical interim dry storage conditions were investigated with the use of as-received 250 and 485ppm hydrogen-charged Zr-Nb alloy cladding tubes. In order to evaluate the effect of typical cool-down processes on the radial hydride precipitation, two terminal heat-up temperatures of 300 and $400^{\circ}C$, as well as two terminal cool-down temperatures of 200 and $300^{\circ}C$, were considered. In addition, two cooling rates of 2.5 and $8.0^{\circ}C/min$ during the cool-down processes were taken into account along with zero stress or a tensile hoop stress of 150MPa. It was found that the 250ppm hydrogen-charged specimen experiencing the higher terminal heat-up temperature and the lower terminal cool-down temperature generated the highest number of radial hydrides during the cool-down process under 150MPa hoop tensile stress, which may be explained by terminal solid hydrogen solubilities for precipitation, and dissolution and remaining circumferential hydrides at the terminal heat-up temperatures. In addition, the slower cool-down rate generates the larger number of radial hydrides due to a cooling rate-dependent, longer residence time at a relatively high temperature that can accelerate the radial hydride nucleation and growth.

Study on Carbon Pick-up in molten iron (I);Effect of Crystallization heat treatment of Carbon-bearing materials on Carbon Pick-up in molten iron (용철(熔鐵)에서의 가탄(加炭)에 관(關)한 연구(硏究)(1);가탄(加炭)에 미치는 탄소재(炭素材)의 결정화열처리(結晶化熱處理)의 영향)

  • Cho, Won-Il;Lee, Jong-Nam
    • Journal of Korea Foundry Society
    • /
    • v.3 no.3
    • /
    • pp.159-166
    • /
    • 1983
  • In order to develope domestic carburizers, the experiment was carried out by applying crystallization heat treatment to domestic anthracites and also to foreign products to compare with domestic anthracites.The present work was mainly concerned with the effect of their degree of crystallization of carbon-bearing materials on carbon pick-up in molten iron.Those effects were evaluated by the measurement of density, chemical composition, specific electric resistivity, and X-ray intensity of carbon-bearing materials. Experimental results thus obtained were summurized as follows. 1. The degree of crystallization of domestic anthracites and foreign products was increased with increasing heat treatment temperature. 2. The more degree of crystallization, the shorter the dissolving time of domestic anthracites in molten iron was obtained, while that of foreign products was remained constant. 3. As the degree of crystallization of domestic anthracites and foreign products was increased, the carbon content as well as carbon recovery in molten iron was increased.

  • PDF

A Study on Heat Transfer Performances of a Heat Pipe Heat Sink for Power Control Semiconductors (전력제어 반도체용 히트파이프 냉각기의 열전달 성능 연구)

  • 강환국;김재진;김철주
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.13 no.8
    • /
    • pp.701-709
    • /
    • 2001
  • In this days, heat pipe heat sink has been widely applied to power controllers for railway substations to remove heat from power semiconductors(diodes or thyristors). The heat pipe heat sink consists of a aluminum heating block for mounting the thyristor, 2~3 heat pipes and large number of aluminum fins. The present study was to get fundamental informations of the structure, design parameters and heat transfer performances of heat pipe heat sink. Series of operational test for a unit with 3 heat pipes were performed and its heat flow circuit was analysed from the experimentally obtained data on wall temperature distribution. Total resistance was ranged 0.02~$0.03^{\circ}C$/W for a power range from 40W to400W. The time to get the steady state was approximately longer than 20 minutes, and overshooting was not occurred during start up operation.

  • PDF

The Effect of Ion-Nitriding & Subsequent Reheating on Hardness and Microstructure of Hot work Tool Steel (STD 61) (열간공구강 STD61의 이온질화 특성과 재가열에 의한 경도와 조직의 변화)

  • Chun, H.D.
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.9 no.2
    • /
    • pp.130-138
    • /
    • 1996
  • It has been investigated that the ion nitriding effects of a STD61 steel in various time conditions of 3 to 9 hours, and the microstructure of compound and diffusion layers of the ion nitrided specimen for 6 hours and subsequently reheated for 1 hour at various temperatures of $400{\sim}800^{\circ}C$ As the nitriding time increased, the thickness of compound and diffusion layers was increased, but the hardness of surface was not considerably increased (Max Hv=1045 at 9hrs). Some of the nitrogen was denitrided out of the surfac and diffused into the core, and also the oxides ($Fe_3O_4$, $Fe_2O_3$) were formed on the surface of the specimen during reheating. The compound layer was partially decomposed at about $600^{\circ}C$ but the diffusion layer was increased up to $800^{\circ}C$. With increasing reheated temperture, the hardness of the surface was decreased, whereas the hardness depth of diffusion layer (0.25mm) was increased up to $600^{\circ}C$ more than that of ion nitrided (0.18mm). The blend-heat treated STD61 steel by ion nitriding is therefore expected to hold on the characteristics of ion nitriding up to $600^{\circ}C$.

  • PDF

High Heat Flux Test of Cu/SS Mock-up for ITER First Wall (ITER 일차벽의 Cu/SS Mock-up에 대한 고열부하 시험)

  • Lee, D.W.;Bae, Y.D.;Hong, B.G.;Lee, J.H.;Park, J.Y.;Jeong, Y.H.
    • Journal of the Korean Vacuum Society
    • /
    • v.15 no.3
    • /
    • pp.325-330
    • /
    • 2006
  • In order to verify the integrity of the first wall (FW) of the International Thermonuclear Experimental Reactor (ITER), the fabricated Cu/SS mock-up is tested in the JAEA Electron Beam Irradiation Test Stand (JEBIS). To fabricate the Cu/SS mock-up, CuCrZr and 316L authentic stainless steel (SS316L) are used for Cu alloy and steel, respectively The hot isostatic pressing (HIP) is used as a manufacturing method with a $1050^{\circ}C$ and 150 MPa. The high heat flux (HHF) test is performed using an electron beam with a heat flux of $5MW/m^2$ and a cycle of 15-sec on time and 30-sec off time. The temperature measurement in the HHF test shows good agreement with the results obtained from ANSYS code analysis, which is used for determining the HHF test conditions.

BACKUP AND ULTIMATE HEAT SINKS IN CANDU REACTORS FOR PROLONGED SBO ACCIDENTS

  • Nitheanandan, T.;Brown, M.J.
    • Nuclear Engineering and Technology
    • /
    • v.45 no.5
    • /
    • pp.589-596
    • /
    • 2013
  • In a pressurized heavy water reactor, following loss of the primary coolant, severe core damage would begin with the depletion of the liquid moderator, exposing the top row of internally-voided fuel channels to steam cooling conditions on the inside and outside. The uncovered fuel channels would heat up, deform and disassemble into core debris. Large inventories of water passively reduce the rate of progression of the accident, prolonging the time for complete loss of engineered heat sinks. The efficacy of available backup and ultimate heat sinks, available in a CANDU 6 reactor, in mitigating the consequences of a prolonged station blackout scenario was analysed using the MAAP4-CANDU code. The analysis indicated that the steam generator secondary side water inventory is the most effective heat sink during the accident. Additional heat sinks such as the primary coolant, moderator, calandria vault water and end shield water are also able to remove decay heat; however, a gradually increasing mismatch between heat generation and heat removal occurs over the course of the postulated event. This mismatch is equivalent to an additional water inventory estimated to be 350,000 kg at the time of calandria vessel failure. In the Enhanced CANDU 6 reactor ~2,040,000 kg of water in the reserve water tank is available for prolonged emergencies requiring heat sinks.

A Study on the Performance of Thermal Mass Flowmeter (열량형 질량 유량계의 성능 평가)

  • Choi, Y.M.;Park, K.A.;Yoon, B.H.;Jang, S.;Choi, H.M.;Lee, S.H.
    • Proceedings of the KSME Conference
    • /
    • 2001.06e
    • /
    • pp.595-600
    • /
    • 2001
  • Thermal mass flow meter(TMF) and thermal mass flow controller(MFC) were used to measure and to control the mass flow rate of gases. TMF and MFC were designed for specified working pressure and gas. For the case of different working pressure and gases, the flow rate measurement accuracy decreased dramatically. In this study, a TMF and MFC was tested with three different gases and pressure range from 0.2 MPa up to 1.0 MPa. Effect of specific heat causes to increase flow measurement error as much as ratio of specific heat compared with reference gas. Changing of pressure causes to increase flow rate measurement error about -0.2% as the working pressure decreased 0.1 MPa. Response time of MFC was below 3.12 s for the case of increasing of flow rate. But the response time was increased up to 6.92 s for the case of decreasing of flow rate. When the solenoid valve was fully closed, a initial delay time of output of MFC was increased up to 1.36 s.

  • PDF

Effects of Heat Therapy according to the Application Time among the Elderly with Osteoarthritis (퇴행성관절염 노인을 위한 온요법의 적용시기에 따른 효과)

  • Kim, Su-Hyeun;Kim, Myung-Hee;Kim, Ju-Sung
    • Journal of muscle and joint health
    • /
    • v.10 no.1
    • /
    • pp.7-18
    • /
    • 2003
  • This study was to investigate the effects(pain, discomfort, and range of motion) of heat therapy according to the application time among the elderly with osteoarthritis. Study participants were 27 elderly women, who were diagnosed as osteoarthritis, suffered from it for more than 6 months, and who were staying at a nursing home in Busan. The independent variable was heat therapy, which was applied for 20minutes, one time per week according to 3 timetable(before waking up, while in daily living, before going to bed) over 6 weeks. The dependent variables were pain and discomfort measured by 20 points visual analog scales, and range of extension and flexion measured by goniometery. The data were analyzed by descriptive statistics and repeated measures ANOVA. The results were as follows ; 1) There were significant differences for pain(F=9.77 p=.0001), discomfort(F=8.07 p=.001), range of extension(F=3.05 p=.05), and flexion(F=9.67 p=.0001) among heat therapy application times. 2) There were significant differences for pain(F=58.18 p=.0001), discomfort(F=63.68 p=.0001), range of extension(F=11.59 p=.001), and flexion(F=17.59 p=.0001) between before and after applying heat therapy. 3) There were not statistically significant differences for pain(F=.64 p=.531), discomfort(F=.18 p=.836), range of extension(F=1.33 p=.270), and fiexion(F=.26 p=.773) between before and after applying heat therapy according to the heat therapy application times. In conclusion, heat therapy was effective in reducing pain and discomfort, and in improving ROM for the elderly with osteoarthritis, but the effect of it was not different according to the time of application. We recommended further studies with larger sample size, longer and more repeatedly applied to investigate the effect of heat therapy according to the time of application.

  • PDF

Influence of Polycarboxylate type Superplasticizer on the Fluidity and Rate of Heat Liberation of Cement Paste (시멘트페이스트의 유동성 및 수화발열속도에 미치는 폴리카르본산계 고성능AE감수제의 영향)

  • Daiki, Atarashi;Song, Young-Jin
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.11a
    • /
    • pp.813-816
    • /
    • 2008
  • Polycarboxylate-type superplasticizer is widely used for producing self-compacting and high-strength concrete and improving concrete durability. This paper discusses the influence of molecular structure of polycarboxylate-type superplasticizer on the fluidity and the rate of heat liberation of ordinary Portland cement paste. The fluidity of cement paste was increased by addition of polycarboxylate-type superplasticizer. The arrival time up to the maximum rate of heat liberation was increased by addition of polycarboxylate-type superplasticizer. The fluidity and the arrival time up to the maximum rate of heat liberation were more influenced by addition of polycarboxylate-type superplasticizer having shorter grafted chain than that having longer grafted chain.

  • PDF