• 제목/요약/키워드: Heat-treatment temperature

검색결과 3,078건 처리시간 0.024초

열처리온도 및 시간에 따른 알루미늄 주조재의 고상확산 접합 특성 (Solid State Diffusion Brazing of the Aluminum Alloy Castings According to the Heat Treatment Conditions)

  • 선주현;신승용;홍주화
    • 열처리공학회지
    • /
    • 제21권6호
    • /
    • pp.300-306
    • /
    • 2008
  • Solid state diffusion brazing of aluminum castings (AC4C) and wrought alloys (Al6061) was conducted in order to improve thermal conductivity and temperature uniformity of the aluminum heater which was generally fabricated by casting method. Tensile strength and thermal conductivity are raised with increasing brazing temperature, obtaining 122.5 MPa and $206W/m{\cdot}K$ at $540^{\circ}C$ 5hrs brazing conditions, respectively. The diffusion brazed heater, shows maximum temperature difference of $4^{\circ}C$, exhibits a enhanced temperature uniformity compared with the cast heater having the maximum temperature difference of $11^{\circ}C$.

열처리에 따른 무전해 니켈 도금 층의 상변태 거동이 부식과 캐비테이션 침식에 미치는 영향 (Effect of Phase Transformation Behavior of Electroless Nickel Plating Layer on Corrosion and Cavitation-Erosion with Heat Treatment)

  • 박일초;김성종
    • Corrosion Science and Technology
    • /
    • 제23권1호
    • /
    • pp.64-71
    • /
    • 2024
  • The objective of this study was to investigate corrosion and cavitation-erosion characteristics of the electroless nickel plating layer with heat treatment. The crystallization temperature of the electroless nickel plating layer was about 410 ℃. The phase transformation energy was confirmed to be 12.66 J/g. With increasing heat treatment temperature, the amorphous electroless nickel plating layer gradually changed to crystalline Ni and Ni3P. At the same time, the crystal grain size was also increased. Additionally, when heat treatment was performed at a temperature above 400 ℃, NiO phase was observed due to oxidation phenomenon. As a result of the electrochemical polarization experiment, the corrosion resistance of the heat-treated electroless nickel plating layers was superior to that of the as-deposited plating layer. This was because crystal grains became larger and grain boundaries decreased during heat treatment. The cavitation-erosion resistance of heat-treated plating layers tended to be superior to that of as-deposited plating layers due to increased microhardness.

난백겔의 열안정성에 관한 연구 1, 가열온도와 시간, pH 및 NaCl농도가 난백겔의 열안정성에 미치는 영향 (Studies on Heat Stability of Egg Albumen Gel 1. Effects of Heating Time and Temperature, PH and NaCl Concentration on Heat Stability of Egg Albumen Gel)

  • 유익종;김창한;한석현;송계원
    • 한국가금학회지
    • /
    • 제17권2호
    • /
    • pp.127-133
    • /
    • 1990
  • 가열온도와 시간, pH 및 NaCl 농도가 난백겔의 열안정성에 미치는 영향을 검토하기 위하여 가열처리 후 난백겔의 특성을 검토하였으며 그 결과는 다음과 같다. 난백을 90~$170^{\circ}C$까지 온도와 시간별 가열처리 한 결과. 110~$130^{\circ}C$ 영역에서 경도가 떨어졌으나 온도가 높아짐에 따라서 급격히 증가하였다. 응집성의 경우는 12$0^{\circ}C$까지 감소한 후 $130^{\circ}C$에서 급격히 증가하였다. 명도는 온도가 높아질수록 시간이 길어질수록 낮아졌으며 황색도는 높아졌다. 난백의 경도는 pH 7을 중심으로 산성영역에서는 고온처리가 높았으며 알카리영역에서 밝았다. 고온처리의 경우가 저온처리에 비해 산성영역에서는 보다 밝았으며 알카리 영역에서는 보다 어두웠다. 염의 첨가에 의해 난백의 경도는 저온처리 시에는 큰 변화가 없었으나 고온처리시 다소 증가하였고 응고집성은 저온처리시 서서히 증가하였으며 고온처리시 0.5%까지 급격히 증가하였다. 색택은 고온고리시 명도가 증가하였고 황색도는 감소하였으며 농도별 차이는 크지 않았다.

  • PDF

발전 보일러용 크롬 저합금강의 용접후열처리 특성 (Characteristics of the Post-Weld Heat Treatment of Chrome Low Alloy Material for a Power Plant Boiler)

  • 위재훈;문승재;유호선
    • 플랜트 저널
    • /
    • 제6권4호
    • /
    • pp.56-62
    • /
    • 2010
  • This study investigated characteristics of the post-weld heat treatment of SA213-T23, which was developed for water wall of the ultra super critical power boiler. The temperature of post weld heat treatment should be $730^{\circ}C$ or higher to reduce hardness of the deposit metal and heat affected zone. Coincidently, the temperature should remain $760^{\circ}C$ or lower to prevent hardness of the base metal from dropping. Hardness decline of deposit metal was trivial according to time when the holding time of heat treatment at $740^{\circ}C$ of post-weld heat treatment gradually increased from initial 15 minutes.

  • PDF

고출력 다이오드 레이저를 이용한 프레스 드로우금형의 열처리 특성 (Heat Treatment Characteristics of a Press Draw Mold by Using High Power Diode Laser)

  • 황현태;소상우;김종도;김영국;김병훈
    • 열처리공학회지
    • /
    • 제22권6호
    • /
    • pp.339-344
    • /
    • 2009
  • Recently, Laser surface treatment technologies have been used to improve wear charactenitics and fatigue resistance of metal molding. When the laser beam is irradiated on the surface and laser speed is appropriate, the laser focal position is rapidly heated and the thermal energy of surface penetrates the material after irradiation, finally imbuing it with a new mechanical characteristic by the process of self-quenching. This research estimates the material characteristic after efficient and functional surface treatment using HPDL, which is more efficient than the existing CW Nd:YAG laser heat source. To estimate this, microstructural changes and hardness characteristics of three parts (the surface treatment part, heat affect zone, and parental material) are observed with the change of laser beam speed and surface temperature. Moreover, the depth of the hardened area is observed with the change of the laser beam speed and temperature. From the results of the experiments, it has been shown that the maximum hardness is approximately 788Hv when the heat treatment temperature and the travel speed are $1150^{\circ}$ and 2 mm/sec, respectively.

저온 열처리로 제작된 1.5 mol% 이트리아 안정화 지르코니아 세라믹스의 상 안정성 및 소결물성 (Phase stability and Sintered Properties of 1.5mol% Yttria-stabilized Zirconia Ceramics Fabricated by Low Temperature Sintering)

  • 김경태;최한철;박정식;이종국
    • 열처리공학회지
    • /
    • 제37권1호
    • /
    • pp.1-8
    • /
    • 2024
  • Phase stability of tetragonal crystals in yttria-stabilized zirconia ceramics is dependent on the content of yttria and the heat-treatment condition, related with mechanical properties. In this study, we fabricated the 1.5 mol% yttria-stabilized zirconia (1.5Y-YSZ) ceramics by cold isostatic pressing (CIP) and post-sintering at temperature range of 1200 to 1350℃ for 2 hours and investigated the sintered properties and microstructural evolution. Sintered and microstructural parameters, i.e, apparent density, grain size and phase composition of 1.5Y-YSZ ceramics were mainly dependent on the sintering temperature. Maximum sintered density of 99.4 % and average grain size of 200-300 nm could be obtained from the heat-treatment condition above sintering temperature at 1300℃ for 2 hours, possessing the superior mechanical hardness with 1200 Hv. However, phase stability of tetragonal grains in 1.5 YSZ ceramics is very low, inducing the phase transformation to monoclinic crystals on specimen surface during cooling after heat-treatment.

망상형 탄소폼의 열처리 온도가 기계적 물성에 미치는 영향 (Effects of Heat-treatment Temperature on Mechanical Properties of Reticulated Carbon Foams)

  • 한윤수;이성민;김형태
    • 한국세라믹학회지
    • /
    • 제49권3호
    • /
    • pp.236-240
    • /
    • 2012
  • The reticulated carbon foam have been used for their excellent properties in terms of thermal management which is getting important in industrial field currently. In this study, we measure the mechanical properties of the reticulated carbon foam which is heat-treated at various temperature from the prepared low-density phenol foam. Simultaneously, we observe microstructures with high resolution transmission microscope and measure the residual oxygen content of carbon foams to figure out the relationship between the apparent change of properties such as weight loss and linear shrinkage during heat treatment. In conclusion, the carbon foam heat-treated at $1400^{\circ}C$ shows the highest strength, and the mechanical behavior is believed to be strongly related to the creation of nano-size graphite crystals from the amorphous carbon during heat treatment. On the other hand, it is turned out that the weight loss occurred at the temperature under $1400^{\circ}C$ comes from the elimination of oxygen in the form of $CO_2$ or CO, but no evidence is found on weight loss mechanism at the temperature above $1400^{\circ}C$.

초경 엔드밀의 플라즈마 이온 주입과 저온 열처리를 통한 내마멸성 향상 (Enhancement of Wear Resistance by Low Heat Treatment and the Plasma Source Ion Implantation of Tungsten Carbide Tool)

  • 강성기;왕덕현;김원일
    • 한국생산제조학회지
    • /
    • 제20권2호
    • /
    • pp.162-168
    • /
    • 2011
  • In this research, nitrogen plasma source ion implantation(PSII) of non-coated tungsten carbide endmill tools was conducted with low heat treatment for increasing wear resistance. After the low heat treatment of PSIIed tools to give a homogeneity of wear resistance, the surface modification of tools was analyzed by hardness test, surface roughness and cutting forces. As for the resultant cutting forces, low heat treatment in temperature of $400^{\circ}C$ and $500^{\circ}C$ is stable because of low cutting resistance. The 20-minutes heat treated tool at spindle speed 25000rpm has superiority of surface roughness, Ra of $0.420{\mu}m$ and was found to have good wear resistance. The higher hardness value was obtained by increasing temperature from $300^{\circ}C$ to $600^{\circ}C$ for PSIIed tools with low heat treatment. As the PSIIed tools under 10minutes at temperature of $600^{\circ}C$ have the highest hardness as Hv of 2349.8, It was analyzed that temperature processing give much influences on hardness.

Effect of Post-Heat-Treatment on Various Characteristics of Commercial Pitch-Based Carbon Fibers

  • Yoon, Sung-Bong;Cho, Chae-Wook;Cho, Dong-Hwan;Park, Jong-Kyoo;Lee, Jae-Yeol
    • Carbon letters
    • /
    • 제8권2호
    • /
    • pp.127-133
    • /
    • 2007
  • In this study, commercially available pitch-based carbon fibers of general grade were post-heat-treated using a boxtype high temperature furnace at $1800^{\circ}C$, $2000^{\circ}$, $2200^{\circ}C$, and $2400^{\circ}C$, respectively. The fundamental characteristics of each heat-treated carbon fibers were investigated in terms of chemical composition, morphology, thermal stability, X-ray diffraction, single filament tensile test, and electrical resistivity. The result showed that the fiber properties were significantly influenced by the post-heat-treatment, indicating the greater effect with increasing treatment temperature. The carbon contents, thermal stability, and tensile properties of the carbon fibers used here were further increased by the post-heat-treatment, whereas the d-spacing between graphene layers and the electrical resistivity were reduced with increasing post-heat-treatment temperature.

온간단조용 금형에 있어서 고속도 공구강의 적용 (Application of High Speed Tool Steel in Warm Forging)

  • 김동진
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2000년도 춘계학술대회논문집
    • /
    • pp.75-78
    • /
    • 2000
  • There are several effective factors to influence die life in the warm forging process. For instance process design die design and die materials etc This study presented heat treatment method which could improve toughness and wear resistance simultaneously in high temperature to apply high speed tool steels like SKH51 to die material for warm forging process. To verify the feasibility of application of heat treatment method mentioned above wear test was performed under the condition of constant time in 40$0^{\circ}C$ Wear coefficient was examined to search a relation between wear amount and time for each material and heat treatment method in 30, 60, and 130 minutes. To quantify the toughness-behavior between room and high temperature impact test was performed and heat fatigue test also fulfilled to compare with the resistance of heat check in room, 200, 400, and $600^{\circ}C$ temperature. On the basis of experimental results mentioned above high speed tool steel was applied to verify appropriateness of newly proposed heat treatment method for die of rotor pole used in automobile alternator. As a result die life of high speed tool steel applied newly proposed heat treatment is longer than that of STD61.

  • PDF