• 제목/요약/키워드: Heat-shock protein

검색결과 607건 처리시간 0.02초

Porphyromonas gingivalis의 열충격단백 발현조절 환경인자에 관한 연구 (Environmental factors regulating the expression of Porphyromonas gingivalis heat shock protein)

  • 최점일
    • Journal of Periodontal and Implant Science
    • /
    • 제34권1호
    • /
    • pp.29-33
    • /
    • 2004
  • The present study was done to evaluate the environmental factors responsible for the expression of Porphyromonas gingivalis heat shock protein. The intensity of the heat shock protein gene expression was comparable to those seen by the heat shock ptreatment of the bacteria $(44^{\circ}C)$ when the bacteria was grown as a mixed culture or biofilm state at $37^{\circ}C$.

이배체 및 삼배체 전복(Haliotis discus hannai) 치패에서 주요 열충격 단백질 유전자들(heat shock protein genes)의 발현 특징 (Expression Pattern of Major Heat Shock Protein Genes in Diploid and Triploid Abalone Haliotis discus hannai Juveniles)

  • 박철지;김은정;남윤권
    • 한국수산과학회지
    • /
    • 제53권4호
    • /
    • pp.515-523
    • /
    • 2020
  • Basal and heat shock-induced mRNA expression patterns of major heat shock protein (HSP) genes, including those encoding heat shock protein (HSP) 90, HSP70, HSP70-12A, heat shock inducible protein 70 (HSIP70), heat shock binding protein 1 (HSPBP1), HSP60, and HSP40 were examined in the gill and hepatopancreas of 1-year-old diploid and triploid abalone Haliotis discus hannai juveniles. Under non-stimulated conditions at 19℃, triploid abalones displayed, in general, higher mRNA levels of various HSPs (HSP70, HSIP70, HSPBP1, HSP70-12A, and HSP60 in the gill and HSIP70, HSPBP1, and HSP60 in the hepatopancreas) than did communally cultured diploids. Conversely, only the hepatopancreatic expression of HSP70-12A was higher in diploids than in triploids. However, the fold changes in gene expression in response to an acute thermal challenge (elevation from 19 to 30℃) were generally greater in diploids than in triploids, such that the difference in basal expression was diminished, weakened, or even reversed after heat shock treatment. However, unlike other HSP genes, the basal expression of HSP60 (higher in 3N) was more pronounced after heat shock treatment. Collectively, the results of this study suggest that triploid abalones have different capacities for not only basal expression but also the heat-induced expression of HSPs in an HSP member-dependent manner.

Heat Shock Responses for Understanding Diseases of Protein Denaturation

  • Kim, Hee-Jung;Hwang, Na Rae;Lee, Kong-Joo
    • Molecules and Cells
    • /
    • 제23권2호
    • /
    • pp.123-131
    • /
    • 2007
  • Extracellular stresses induce heat shock response and render cells resistant to lethal stresses. Heat shock response involves induction of heat shock proteins (Hsps). Recently the roles of Hsps in neurodegenerative diseases and cancer are attracting increasing attention and have accelerated the study of heat shock response mechanism. This review focuses on the stress sensing steps, molecules involved in Hsps production, diseases related to Hsp malfunctions, and the potential of proteomics as a tool for understanding the complex signaling pathways relevant to these events.

Overexpressed Drosophila DNA Methyltransferase 2 Isoform C Interacts with Hsp70 in Vivo

  • Roder, Karim
    • BMB Reports
    • /
    • 제40권4호
    • /
    • pp.554-561
    • /
    • 2007
  • Shen and colleagues (Lin et al., 2004) have recently shown that overexpression of the Drosophila DNA methyltransferase 2 isoform C, dDnmt2c, extended life span of fruit flies, probably due to increased expression of small heat shock proteins such as Hsp22 or Hsp26. Here, I demonstrate with immunoprecipitations that overexpressed dDnmt2c interacts with endogenous Hsp70 protein in vivo in S2 cells. However, its C-terminal half, dDnmt2c(178-345) forms approximately 10-fold more Hsp70-containing protein complexe than wild-type dDnmt2c. Overexpressed dDnmt2c(178-345) but not the full length dDnmt2c is able to increase endogenous mRNA levels of the small heat shock proteins, Hsp26 and Hsp22. I provide evidence that dDnmt2c(178-345) increases Hsp26 promoter activity via two heat shock elements, HSE6 and HSE7. Simultaneously overexpressed Hsp40 or a dominant negative form of heat shock factor abrogates the dDnmt2c(178-345)-dependent increase in Hsp26 transcription. The data support a model in which the activation of heat shock factor normally found as an inactive monomer bound to chaperones is linked to the overexpressed C-terminus of dDnmt2c. Despite the differences observed in flies and S2 cells, these findings provide a possible explanation for the extended lifespan in dDnmt2c-overexpressing flies with increased levels of small heat shock proteins.

Heat-Shocked Drosophila Kc Cells Have Differential Sensitivity to Translation Inhibitors

  • Han, Ching-Tack
    • BMB Reports
    • /
    • 제30권1호
    • /
    • pp.55-59
    • /
    • 1997
  • The heat shock response is a universal stress response observed in all organisms and cultured cells. The response is regulated at both the transcriptional and translational level. Heat shocked Drosophila melanogaster Kc cells are used as the system for the study of translational regulation. In this system non-heat shock messages are associated with polysome but are not translated in a heat shocked condition. To figure out the change in the translation machinery. the effects of translation elongation inhibitors were tested on Kc cells. The result showed that the sensitivity of translation to these drugs changed in heat shocked cells. The significant changes were the decreased inhibition of heat shock protein synthesis by cycloheximide, emetine. and puromycin. and the increased inhibition of heat shock protein synthesis by verrucarin A. implying that the translation elongation mechanism in heat shocked cells changed.

  • PDF

Hyperthermia-induced Apoptosis is Independent upon DNA Strand Breaks in Human Lymphoid Cells

  • Jung, Hwa-Jin;Ka, Won-Hye;Hwang, Jee-Na;Seo, Young-Rok
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제8권6호
    • /
    • pp.345-349
    • /
    • 2004
  • Heat shock ($43^{\circ}C$ for 60 minutes) is sufficient to induce apoptosis in a wide number of cell lines. In this study, we asked whether DNA strand breaks are responsible for this phenomenon. Using the highly sensitive comet assay for DNA damage detection, we were unable to demonstrate DNA breaks immediately after heat shock in Raji human Iymphoid cells. It showed that DNA breaks were not necessary for hyperthermic apoptosis, since its activity is indicative of DNA lesions. Here, we present a suggestion that a protein(s) is the major target for heat shock apoptosis. We firstly found glycerol, which reportedly stabilizes protein structure, showed a protective effect in Raji cells against hyperthermic apoptosis. In addition, quercetin, which modulates transcription of the heat shock protein family members, enhanced apoptotic death induced by hyperthermia. Furthermore, Raji cells are protected by a pre-mild heat treatment prior to the killing dose of heat shock.

SB202190- and SB203580-Sensitive p38 Mitogen-Activated Protein Kinase Positively Regulates Heat Shock- and Amino Acid Analog-Induced Heat Shock Protein Expression

  • Kim, Sun-Hee;Han, Song-Iy;Oh, Su-Young;Seo, Myoung-Suk;Park, Hye-Gyeong;Kang, Ho-Sung
    • 대한의생명과학회지
    • /
    • 제9권2호
    • /
    • pp.59-65
    • /
    • 2003
  • When cells are exposed to proteotoxic stresses such as heat shock, amino acid analogs, and heavy metals, they increase the synthesis of the heat shock proteins (HSPs) by activating the heat shock transcription factor 1 (HSF1), whose activity is controlled via multiple steps including homotrimerization, nuclear translocation, DNA binding, and hyperphosphorylation. Under unstressed conditions, the HSF1 activity is repressed through its constitutive phosphorylation by glycogen synthase kinase 3$\beta$ (GSK3$\beta$), extracellular regulated kinase 1/2 (ERK1/2), and stress-activated protein kinase/c-Jun N-terminal kinase (SAPK/JNK). However, the protein kinase (s) responsible for HSF1 hyperphosphorylation and activation is not yet identified. In the present study, we observed that profile of p38 mitogen-activated protein kinase (p38MAPK) activation in response to heat shock was very similar to those of HSF1 hyperphosphorylation and nuclear translocation. Therefore, we investigated whether p38MAPK is involved in the heat shock-induced HSF1 activation and HSP expression. Here we show that the p38MAPK inhibitors, SB202190 and SB203580, but not other inhibitors including the MEK1/2 inhibitor PD98059 and the PI3-K inhibitor LY294002 and wortmannin, suppress HSF1 hyperphosphorylation in response to heat shock and L-azetidine 2-carboxylic acid (Azc), but not to heavy metals. Furthermore, heat shock-induced HSF1-DNA binding and HSP72 expression was specifically prevented by the p38MAPK inhibitors, but not by the MEK1/2 inhibitor and the PI3-K inhibitors. These results suggest that SB202190- and SB203580-sensitive p38MAPK may positively regulate HSP gene regulation in response to heat shock and amino acid analogs.

  • PDF

열 및 에탄을 shock이 Vibrio vulnificus의 막단백질에 미치는 영향 (Effects of heat and ethanol shock on the membrane proteins of Vibrio vulnificus)

  • 허문수;정초록
    • 한국어병학회지
    • /
    • 제12권2호
    • /
    • pp.89-99
    • /
    • 1999
  • V. vulnificus ATCC 27562균주의 배양 온도를 $2^{\circ}C $, 20분간 및 6% 에탄올, 10분간으로 반응시켰을 때 SDS-PAGE상에서 새로운 16가지의 heat shock protein(hsps)과 10가지의 ethanol shock protein이 나타났다. Lethal temperature에 노출하기전에 미리 열 충격을 가한 경우 thermo tolerance가 유도되었다. 균체면역에 의해 생성된 항혈청과 열 충격 세포에서 분리된 막단백질과의 ELISA에서는 Outer Membrane Protein(OMP)에서 높은 면역반응을 나타냈으며 western blotting으로는 Inner Membrane Protein(IMP)에서는 62kDa, OMP에서는 69 kDa단백이 높은 면역원성을 나타냈다. ethanol 충격 반응에서는 IMP에서는 48 kDa, OMP에서는 오직 major밴드에서만 면역반응성이 확인되었다. anti-V, vulnificus혈청에 대한 균체 응집시험에서는 열 충격 반응 후의 균체가 정상 균체에 비해 응집반응성이 높았다.

  • PDF

Effect of Acute Heat Stress on Heat Shock Protein 70 and Its Corresponding mRNA Expression in the Heart, Liver, and Kidney of Broilers

  • Yu, Jimian;Bao, Endong
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제21권8호
    • /
    • pp.1116-1126
    • /
    • 2008
  • The objective of this study was to investigate the expression and localization of heat shock protein 70 (Hsp70) and its mRNA in the heart, liver, and kidney of acutely heat-stressed broilers at various stressing times. Male AA broilers (n = 100) were randomly divided into 5 groups of 20 birds per group. After 30 d of adaptive feeding at ambient temperature, 80 experimental broilers were suddenly heat stressed by increasing the environmental temperature from $22{\pm}1^{\circ}C$ to $37{\pm}1^{\circ}C$. The 4 groups were heat stressed for 2, 3, 5, and 10 h, respectively. The localizations of Hsp70 protein and mRNA, determined by immunohistochemical staining and in situ hybridization, respectively, were demonstrated to be tissue dependent, implying that different tissues have differential sensibilities to heat stress. Intense Hsp70 staining was identified in the vascular endothelial cell of heart, liver and kidney, suggesting an association between expression of Hsp70 in vascular endothelial cell and functional recovery of blood vessels after heat shock treatment. Ante-mortem heat stress had a significant effect on the expression of Hsp70 protein and mRNA. The quantitation of Hsp70 protein and mRNA were both time and tissue dependent. During the exposure to heat stress, the heart, liver and kidney of broiler chickens exhibited increased amounts of Hsp70 protein and mRNA. The expression of hsp70 mRNA in the heart, liver and kidney of heat-stressed broilers increased significantly and attained the highest level after a 2-h exposure to elevated temperatures. However, significant elevations in Hsp70 protein occurred after 2, 5, and 3 h of heat stressing, respectively, indicating that the stress-induced responses vary among different tissues.

치주염환자의 Porphyromonas gingivalis 열충격단백에 대한 T-세포 항원 결정부위 특이성 연구 (T-cell epitope specificity for Porphyromonas gingivalis heat shock protein in periodontitis)

  • 이지영;이주연;최점일
    • Journal of Periodontal and Implant Science
    • /
    • 제33권4호
    • /
    • pp.543-553
    • /
    • 2003
  • Due to considerably high degree of sequence homology between bacterial and human heat shock proteins(hsp), it has been widely thought that this protein might be involved in autoimmune disease mechanisms in humans. To elucidate how stress proteins contribute in the immunopathogenesis of periodontitis, the present study was performed to evaluate the T cell immune responses specific to Porphyromonas gingivalis (P. gingivalis) heat shock protein (hsp)60 and T-cell epitope specificities for P. gingivalis hsp60 in periodontitis. Anti-P. gingivalis IgG antibody titers were elevated in all patients. We could establish P. gingivalis hsp-specific T cell ines from the peripheral blood of peridontitis, a mixture of $CD4^+$ and $CD8^+$ cells. Of 108 overlapping synthetic peptides spanning whole P. gingivalis hsp60 moleculc, ten peptides with cpitopes specifities for T-cell were showed. Interestingly, ten epitopes were also identified as T-cell epitopes in the present study as well as B-cell epitopes in peridontitis. Therefore, all the ten representative epitopes were designated as common T-and B-cell epitopes for peridontitis. It is critical in developing a peptide vaccine strategy for potential prevention of periodontitis. It was concluded that P. gingivalis hsp60 might be involved in the immunoregulatory process of periodontitis with heat shock protein specificities.