• Title/Summary/Keyword: Heat-resistant

Search Result 607, Processing Time 0.027 seconds

Effect of heat treatment of digestion-resistant fraction from soybean on retarding of bile acid transport in vitro

  • Han, Sung-Hee;Lee, Seog-Won;Rhee, Chul
    • Nutrition Research and Practice
    • /
    • v.3 no.2
    • /
    • pp.149-155
    • /
    • 2009
  • In this study, we investigated the heat effect of digestion-resistant fraction (RF) from soybean on retarding bile acid transport in vitro. The RFs from soybean retarded bile acid transport. A raw, unheated RF of soybean (RRF-SOY) was significantly more effective than the heated RF of soybean (HRF-SOY). The RS1 which physically trapped in milled grains and inaccessible to digestive enzyme after 18 hrs incubation level of content in RRF-SOY was found to be as high as 24.1% and after heating the RS1 of HRF-SOY was significantly reduced to 16.8%. The X-ray diffraction pattern of RF from soybean was altered after heat treatment. The RFs from soybean were characterized by peak at diffraction angles of $12.0^{\circ}$ and $20.0^{\circ}$ corresponding to RS content. Cellulose contents of RRF-SOY was 5% higher than that of HRF-SOY and pentosan contents of RRF-SOY was 5% higher than that of HRF-SOY, too. Whereas the hemicellulose content of RRF-SOY was 13% lower than HRF-SOY.

High Temperature Tensile Properties of Heat-resistant Cast Ferritic Stainless Steels (고내열 페라이트계 스테인레스 주강의 고온인장특성 평가)

  • Jeong, Hyeon Kyeong;Lee, Dong-Geun
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.34 no.1
    • /
    • pp.10-16
    • /
    • 2021
  • Exhaust manifold is a very important component that is directly connected to air environment pollution and that requires strict mechanical properties such as high temperature fatigue and oxidation. Among stainless steels, the ferritic stainless steel with body-centered cubic structure shows excellent resistance of stress-corrosion cracking, ferromagnetic at room temperature, very excellent cold workability and may not be enhanced by heat treatment. The microstructural characteristics of four cast ferritic stainless steels which are high heat-resistant materials, were analyzed. By comparing and evaluating the mechanical properties at room temperature and high temperature in a range of 400℃~800℃, a database was established to control and predict the required properties and the mechanical properties of the final product. The precipitates of cast ferritic stainless steels were analyzed and the high-temperature deformation characteristics were evaluated by comparative analysis of hardness and tensile characteristics of four steels at room temperature and from 400℃ to 800℃.

Microstructure and High Temperature Deformation Behavior of Heat Resistant Stainless Steel for a Retort (열환원반응관용 내열강의 미세조직과 고온변형거동)

  • Choi, G.S.;Ha, T.K.
    • Transactions of Materials Processing
    • /
    • v.22 no.3
    • /
    • pp.165-170
    • /
    • 2013
  • High temperature deformation behavior of a heat-resistant duplex stainless steel, used as a retort in the Pidgeon process for Mg production, was investigated in this study. 25Cr-8Ni based duplex stainless steels were cast into rectangular ingots, with dimensions of $350mm{\times}350mm{\times}100mm$. Nitrogen and yttrium were added at 0.3wt.% each to enhance the heat-resistance of the steel. Phase equilibrium was calculated using the thermodynamic software FactSage$^{(R)}$ and the database of FSStel. For comparison, cast 310S steel, a widely used heat-resistant austenitic stainless steel, was also examined in this study. Dilatometry was conducted on the as-cast ingots for the temperature range from RT to $1200^{\circ}C$ and the thermal expansion coefficients were evaluated. The nitrogen addition was found to have an effect on the thermal expansion behavior for temperatures between 800 and $1000^{\circ}C$. High temperature tensile and compression tests were conducted on the ingots for temperatures ranging from 900 to $1230^{\circ}C$, which is the operation temperature employed in Mg production by the Silico-thermic reduction process. The steel containing both N and Y showed much higher strength as compared to 310S.

Development of a Heat-resistant Brake Disk Material (내열성 제동 디스크 소재 개발)

  • Goo, Byeong-Choon;Lim, Choong-Hwan
    • Proceedings of the KSR Conference
    • /
    • 2007.11a
    • /
    • pp.1000-1004
    • /
    • 2007
  • Thermal cracks are among the key factors that control the quality of a brake disk. Thermal cracks may shorten the lifetime of the disc and increase brake noise. Therefore, high heat-resistant brake disk materials are needed. In this study, three kinds of disk material were tested. They are composed of C, Si, Mn, P, S, Cu, Cr, Mo, and Ni. For the three materials, tensile tests, hardness measurement, metallurgical structure analysis, image analyzer analysis, etc were carried out. And friction tests were performed by a small scale dynamometer.

  • PDF

Studies on the Factors Influencing the Transformation in Escherichia with pBR322 DNA (Escherichia coli의 pBR322 DNA 형질전환에 관여하는 인자에 관한 연구)

  • Yoo, Han-sang;Mah, Jum-sool
    • Korean Journal of Veterinary Research
    • /
    • v.24 no.1
    • /
    • pp.40-49
    • /
    • 1984
  • To investigate the factors influencing the artifical transformation in Escherichia coli, E. coli C600 was transformed by pBR322 DNA with tetracycline and ampicillin resistant gene purified by CsCl-Etbr equilibrium density gradient centrifugation from E.coli HB 101. The influencing factors in the transformation such as concentration of calcium chloride, time of ice incubation, temperature and time of heat shock, time of gene expression, effects of plasmid DNA concentration and adding time were examined in these experiments. The results obtained were as follows; 1. The highest transformation frequency was observed in the treatments of 100 mM $CaCl_2$ before heat shock and the treatment of $CaCl_2$ was essential step in the process of E. coli transformation. 2. The highest transformation frequency was observed in the treatment of heat shock at $42^{\circ}C$ for 4 min. or $37^{\circ}C$ for 6 min., but the prolonged heat shock resulted a decreased transformation frequency. 3. Treatments of ice incubation at $0^{\circ}C$ for 45 min. before heat stocks or at $0^{\circ}C$ for 30min. after heat shock resulted an increased transformation frequency. 4. There was a linear relationship between DNA concentration and transformation frequency at the concentration of $8{\times}10^3$ recipient cells. The highest transformation frequency reached in carte of 7 mcg of donor DNA, but above 1 mcg of DNA concentration, transformation frequency was not remarkably increased. Addition of donor DNA just after the treatment of $CaCl_2$ was the best. 5. The best condition of gene expression at $37^{\circ}C$ were 40min. for TC-resistant gene and 100min. for AP-resistant gene. TC-resistant gene was higher in the transformation frequency and faster in the gene expression time than AP-resistant gene. In these results, the best conditions for the transformation of E. coli C 600 with pBR322 DNA were: treatment with 100mM $CaCl_2$, ice incubation at $0^{\circ}C$ for 45 min, heat shock at $42^{\circ}C$ for 4 min., 30 min. of ice incubation and incubation at $37^{\circ}C$ for 100min. for gene expression in that order.

  • PDF

Fatigue Behavior of 23Cr26Ni Heat Resistant Steel (23Cr26Ni 내열강의 피로 특성)

  • Lee, H.W.;Kwun, S.I.
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.24 no.2
    • /
    • pp.92-98
    • /
    • 2011
  • The influence of the cooling condition after solution treatment on the high temperature fatigue resistance of 23Cr-26Ni heat resistant steel was investigated. Two different cooling conditions were applied to the steel after solution treatment at $1200^{\circ}C$ for 3 hours. One specimen was water quenched immediately after the solution treatment. The other one was furnace cooled at a rate of $0.5^{\circ}C/min$ down to $750^{\circ}C$ after the solution treatment. Then, both specimens were aged at $750^{\circ}C$ for 5 hours. Under two different heat treatment conditions, the low cycle fatigue (LCF) test was performed at $600^{\circ}C$ and room temperature (RT). Only cyclic hardening continued from the beginning until fracture at all strain amplitudes during LCF at $600^{\circ}C$. This phenomenon was attributed to the increase in the dislocation density due to cyclic deformation, which resulted in the interaction between the newly created dislocations and precipitates. Cyclic hardening followed by saturation and cyclic softening was observed at RT. Cyclic softening was attributed to the dislocation annihilation rate exceeding the dislocation generation rate. Other probable factor for cyclic softening was some cavities formed around grain boundaries after 20 cycles. WQ and FC have a similar LCF behavior at RT and $600^{\circ}C$ as shown in the cyclic stress response curves.

Development of the High-quality Coating System for the Steam Pipe of Ship (선박 스팀파이프용의 고내구성 도장 사양 개발 연구)

  • Lee, Sung-Kyun;Baek, Kwang-Ki;Hwang, Dong-Un;Song, Eun-Ha
    • Special Issue of the Society of Naval Architects of Korea
    • /
    • 2006.09a
    • /
    • pp.46-52
    • /
    • 2006
  • For ships, heat resistant coating is applied on the aluminized steel pipe systems dealing with high temperature steam over $200^{\circ}C$. The coatings on these steam pipes should retain both heat resistance and anti-corrosion properties to provide long-term resistance against coating defects (rust, delamination and crack) under the harsh outdoor environment including repeated seawater wetting and condensation. Thus, it is important to improve the coating qualities and to reduce maintenance works for these steam pipe systems. In this study, five different commercial heat resistant coatings (A, B, C, D, E) were selected for evaluation. Various physical properties of these coatings were evaluated on the coatings applied on the aluminized steam pipes. FT-IR analysis was also employed to identify the factors contributing the degree of heat resistance and durability of each coating material. The results indicated that the heat resistance capacity of coatings increased with the increase of silicon content as well as the decrease of substituent content. Both products C and D showed the best coating qualifies, which can be standard coating systems for future steam pipe areas.

  • PDF

Study on Heat Resistant Putrefactive Spore Formers in Korean Soil and Processed Foods -Part 1. Survey on regional distribution of spore forming bacteria- (가공식품(加工食品)의 내열성부패균(耐熱性腐敗菌) 분포(分布) 조사연구(調査硏究) -(제(第) 1 보(報)) 지역별(地域別) 아포형성균(芽胞形成菌) 조사(調査)-)

  • Koo, Young-Jo;Shin, Dong-Hwa;Kim, Choung-Ok;Min, Byoung-Yong
    • Korean Journal of Food Science and Technology
    • /
    • v.10 no.2
    • /
    • pp.224-230
    • /
    • 1978
  • Heat resistant putrefactive microorganisms causing spoilage of canned and processed foods were surveyed in the compost on mushroom growing bed, casing soil, raw mushrooms and canned products before sterilization at canneries located at 8 places including Buyo in Chung-Cheung-Do and monitored the total count and spore formers from the sample taken. The 9 strains of most severe heat resistant among the selected 140 spore formers were selected and determined D and Z value by TDT method. The most strong heat resistant strain was No. F-10, facultative thermophile, which was isolated from raw mushroom in Buyo area and it's Z value was $21.1^{\circ}F$ (M/15 phosphate buffer solution) and $D^{250}$ was 6.6 min.

  • PDF

Evaluation of Thermal Aging on PVC Using Thermo Gravimetry Analysis and Accelerated Thermal Aging Test (TGA와 가속열화를 이용한 전선 피복용 PVC의 열적 열화평가)

  • 박형주;김기환;김홍
    • Fire Science and Engineering
    • /
    • v.18 no.3
    • /
    • pp.45-50
    • /
    • 2004
  • Thermal degradation of PVC which used for insulator of 600V vinyl insulated wire has been studied by thermo gravimetry analysis and accelerated thermal aging test. The activation energy using thermo gravimetry analysis was determined by the kinetic methods, such as Kissinger and Flynn-Wall-Ozawa. The activation energy was determined to from 89.29 kJ/mol to 111.39 kJ/mol in 600V PVC insulated wire and from 97.80 kJ/mol to 119.25 kJ/mol in 600v heat-resistant PVC insulated wire. And also, the activation energy through a long-term thermal aging test was calculated by using Arrhenius equation In the low temperature of 8$0^{\circ}C$, 9$0^{\circ}C$, 10$0^{\circ}C$. The results showed that 600V PVC insulated wire was 92.16 kJ/mol, and 600v heat-resistant PVC insulated wire was 97.52 kJ/mol. Consequently, the activation energy of 600V heat-resistant PVC insulated wire is larger than 600V PVC insulated wire. Therefore, it can be predicted that 600V heat-resistant PVC insulated wire has a long-term stability relatively.