• Title/Summary/Keyword: Heat-resistance steel

Search Result 487, Processing Time 0.028 seconds

The Effect of Solution Heat Treatments on the Microstructure and Corrosion Behaviour for a Duplex Stainless Steel

  • Kim, Ki-Joon;Lee, Joon-Goo;Oh, Jae-Whan;Lee, Myung-Hoon;Moon, Kyung-Man
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.28 no.2
    • /
    • pp.217-227
    • /
    • 2004
  • The bowl in a ship purifier suffers from high stress and high temperature in a detrimental heavy fuel oil environment. Duplex stainless steel(DSS) is a primary material to withstand this harsh condition. Newly-manufactured STS 329 grade DSS has been evaluated by various mechanical and electrochemical test methods. Eight heat treatment(HT) conditions with different temperature and time were applied to the DSS samples to improve corrosion resistance. Microstructure and polarization test results concluded the optimum HT condition was $1.090^{\circ}C$-60 minutes. Confirmation experiments for applying to a real bowl including stress corrosion cracking test exhibited the reproducibility of the optimum HT condition.

Low Temperature Impact Toughness and Stress Corrosion Resistance in Duplex Stainless Steel Welds (2상 스테인리스강 용접부의 저온충격인성과 내응력 부식성에 관한 연구)

  • 김효종;이성근
    • Journal of Ocean Engineering and Technology
    • /
    • v.9 no.1
    • /
    • pp.151-160
    • /
    • 1995
  • The characteristics of low temperature impact toughness and stress corrosion resistance at boiling MgCl$_2$ solution of GTA and SMA weld of duplex stainless steels have been investigated. The impact toughness was highest at the GTAW weld metal and lowest at the SMAW weld, which was almost the same as that of the SMAW heat-affected zone. This was attributable to influence of austenite-ferrite phase balance, and the degree and nature of precipitation that occurred during welding. The SCC resistance of the weldments was slightly higher than that of the base metal, whereas no difference in the SCC resistance was found between two different weldments.

  • PDF

A Study on Wear Resistance and Surface Hardening of 3%Cr-Mo-V Steel by Two-step Gas Nitriding (3%Cr-Mo-V강의 2단 가스질화처리를 통한 표면경화 및 내마모성 연구)

  • Jung, G.B.
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.22 no.6
    • /
    • pp.361-367
    • /
    • 2009
  • The two-step gas nitriding was adopted to increase the depth of surface hardening in 3%Cr-Mo-V steel. The two-step gas nitriding consisted of Step I; $520^{\circ}C{\times}20\;hrs$ and Step II; $550^{\circ}{\times}70\;hrs$. The layer of two-step gas nitriding showed better uniformity and deeper nitriding layer than one-step gas-nitriding layer. The maximum surface hardness showed the value of 850 Hv. The maximum depth of nitrogen permeation showed $750\;{\mu}m$ (350 Hv). X-ray diffraction analysis showed that compound layer was mainly consisted of CrN and $\varepsilon-Fe_3N$ phases. These phases were presumed contributing to surface hardening and wear resistance. However, the corrosion resistance of gas-nitrided Cr-Mo-V steel were not improved in the solution of 1 N HCl and NaOH. Therefore, it is necessary that the continuous study for improvement of corrosion resistance hereafter.

Effect of Thermal History on Pitting Corrosion of High Nitrogen and Low Molybdenum Stainless Steels

  • Kim, Kwangsik;Chang, Hyunyoung;Kim, Youngsik
    • Corrosion Science and Technology
    • /
    • v.2 no.2
    • /
    • pp.75-81
    • /
    • 2003
  • Chromium, molybdenum. and nitrogen are very important alloying elements in stainless steels and its effect was approved in pitting resistance equivalent (PRE) equations and many experimental results. However, Cr can improve the corrosion resistance, but facilitate the formation of sigma phase. Also. Mo has the same effect in stainless steels. If Cr and Mo are added at high amount to increase the corrosion resistance of stainless steel, corrosion resistance in annealed alloys can be improved, but in case of welding or aging heat treatment. its resistance will be drastically decreased. In this work, increasing Cr and N contents but decreasing Mo than the commercial alloys made the experimental alloys. Typical alloys are 25Cr-4.5Mo-0.43N alloy, 27Cr-4.7Mo-0.4N alloy, 27Cr-5.3Mo-0.25N alloy, 32Cr-2.6Mo-0.36N alloy. After annealing and aging heat treatment, microstructures, anodic polarization test, and pitting corrosion test were performed. Annealed alloys showed $100^{\circ}C$ of CPT and aged alloys showed the different tendency depending upon Cr and Mo contents(SFI)

Long-Term Life Test of A Stainless Steel-Sodium Heat Pipe (스테인리스 스틸-나트륨 히트파이프의 장기 수명 시험)

  • Park, S.Y.;Jung, E.G.;Boo, J.H.;Kang, H.K.;Yoo, J.H.;Park, S.H.
    • Proceedings of the KSME Conference
    • /
    • 2004.11a
    • /
    • pp.1058-1062
    • /
    • 2004
  • High-temperature cylindrical stainless steel/sodium heat pipe was manufactured and tested under long-term operation. The container material was stainless steel 316L and the working fluid was sodium. The heat pipe was 25.4 mm in diameter and 1000 mm in length with a two-layer screen mesh wick. The evaporator part was 600 mm and the condenser part was 300 mm in length. Total measurement points on heat pipe were 15 points and 12 points were located in condenser part. The heat pipe was heated for 142 days(3400 hours) at $800^{\circ}C$. In the test period, the maximum temperature difference was increased from $18^{\circ}C$ o $28^{\circ}C$ and the maximum thermal resistance was as low as $0.015^{\circ}CW$.

  • PDF

δ-Ferrite Behavior of Butt Weld Zone in Clad Steel Plates Depended on Holding Time of PWHT (클래드강 맞대기 용접부의 후열처리 유지시간에 따른 델타 페라이트 거동)

  • Park, Jae-Won;Lee, Chul-Ku
    • Journal of Welding and Joining
    • /
    • v.32 no.2
    • /
    • pp.29-36
    • /
    • 2014
  • Recently, in order to enhance the function and usefulness of products, cladding of dissimilar materials that maximizes the performance of the material is being widely used in all areas of industry as an important process. Clad steel plate, produced by cladding stainless steel plate, an anticorrosive material, on carbon steel plate, is being used to produce pressure vessels. Stainless steel plate has good corrosion resistance, and carbon steel plate has good rigidity and strength; clad steel can satisfy all of these qualities at once. This study aims to find the ${\delta}$-ferrite behavior, mechanical properties, structure change, integrity and reliability of clad steel weld on hot rolled steel plates. For this purpose, multi-layer welding, repair welding and post weld heat treatment were implemented according to welding procedure specifications (WPS). In order to observe the mechanical properties and toughness of clad steel weld zone, post weld heat treatment was carried out according to ASME Sec. VIII Div.1 UW-40 procedure for post weld heat treatment. With heat treatment at $625^{\circ}C$, the hold time was used as the process variable, increased by intervals that were doubled each time, from 80 to 1,280 min. The structure of weld part was typical cast structure; localized primary austenite areas appeared near central vermicular ferrite and fusion line. The heat affected zone showed rough austenite structure created by the weld heat input. Due to annealing effects of heat treatment, the mechanical properties (tensile strength, hardness, impact value) of the heat affected area tended to decrease. From the results of this study, it is possible to conclude the integrity of clad steel welds is not affected much in field welding, repair welding, multi-layer welding, post weld heat treatment, etc.

Study on the Cold Formability of Drawn Dual-Phase Steels (신선 가공된 이상 조직강의 냉간 성형성에 대한 연구)

  • 박경수;최상우;이덕락;이종수
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2003.10a
    • /
    • pp.269-273
    • /
    • 2003
  • There is a growing interest to replace the commercial steels with non-heat treated steels, which does not involve the spheroidization and quenching-tempering treatment. However, Non-heat treated steels should satisfy high strength and good formability without performing heat treatment. Therefore, it is important to investigate optimum materials showing a good combination of strength and formability after the drawing process. In this study, Dual-Phase Steels were studied as candidate materials for non-heat treated steels, which have different martensite morphologies and volume fractions obtained through heat-treatment of intercritical quenching (IcQ), intermediate quenching (ImQ) and step quenching (SQ). The mechanical properties of DP steels were measured by tension and compression tests. Also, the cold formability of three DP steels which have similar tensile strength value was investigated by estimating the deformation resistance and the forming limit. The deformation resistance which is important factor in determining die life was estimated by calculating the deformation energy. And the forming limit was estimated by measuring the critical strain revealing crack initiation at the notch tip of the specimens.

  • PDF

A Study on the Cold Formability of Drawn Dual-Phase Steels (신선 가공된 이상 조직강의 냉간 성형성에 대한 연구)

  • 박경수;최상우;이덕락;이종수
    • Transactions of Materials Processing
    • /
    • v.13 no.1
    • /
    • pp.84-89
    • /
    • 2004
  • There is a growing interest to replace the commercial steels with non-heat treated steels, which does not involve the spheroidization and quenching-tempering treatment. However, Non-heat treated steels should satisfy high strength and good formability without performing heat treatment. Therefore, it is important to investigate optimum materials showing a good combination of strength and formability after the drawing process. In this study, Dual-Phase Steels were studied as candidate materials for non-heat treated steels, which have different martensite morphologies and volume fractions obtained through heat-treatment of intercritical quenching (IcQ), intermediate quenching (ImQ) and step quenching (SQ). The mechanical properties of DP steels were measured by tension and compression tests. Also, the cold formability of three DP steels which have similar tensile strength value was investigated by estimating the deformation resistance and the forming limit. The deformation resistance which is important factor in determining die life was estimated by calculating the deformation energy. And the forming limit was estimated by measuring the critical strain revealing crack initiation at the notch tip of the specimens.

Microstructure and Corrosion Characteristics of Austenitic 304 Stainless Steel Subjected to Long-term Aging Heat Treatment (장시간 시효 열처리된 오스테나이트계 304강의 미세조직과 부식 특성)

  • Huh, ChaeEul;Kim, ChungSeok
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.21 no.1
    • /
    • pp.56-65
    • /
    • 2022
  • The electrochemical corrosion properties of austenitic AISI 304 steel subjected to a long-term-aging heat treatment were investigated. AISI 304 steel was aged at 700 ℃ for up to 10,000 h. The variation in the microstructure of the aged specimens was observed by optical microscopy and scanning electron microscopy. Electrochemical polarization experiments were performed to obtain the corrosion current density (Icorr) and corrosion potential (Ecorr). Analyses indicated that the metastable intermetallic carbide M23C6 formed near the γ/γ grain boundary and coarsened with increasing aging time; meanwhile, the δ-ferrite decomposed into the σ phase and into M23C6 carbide. As the aging time increased, the current density increased, but the corrosion potential of the austenitic specimen remained high (at least 0.04 ㎛/cm2). Because intergranular carbide was absent, the austenitic annealed specimen exhibited the highest pitting resistance. Consequently, the corrosion resistance of austenitic AISI 304 steel decreased as the aging heat treatment time increased.

The Crevice Corrosion Behavior of AISI 304 & 316L Stainless Steel Welded by TIG, MIG, CO2 and SMA (용접방법에 따른 AISI 304 및 316L스테인리스강 용접부의 틈부식 거동)

  • 백신영
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.15 no.4
    • /
    • pp.22-28
    • /
    • 1991
  • The crevice corrosion behavior on austenitic AISI 304 and 316L stainless steel welded by TIG, MIG, $CO_2$ and SMA was studied. The results are as follows : In 10% $FeCl_3$ solution and natural sea water sampled near Mokpo port, the base metal of 304 stainless steel showed small amount corrosion, whereas 316L stainless steel did not showed any corrosion in the test periods. The weight loss caused by crevice corrosion increased with increasing weld heat input and residual .delta. ferrite formed in welded part. The corrosion resistance of the welded part was in the order of TIG, MIG, $CO_2$ and SMA. From this tendency, it is proved that the smaller heat input gives the better corrosion resistance.

  • PDF