• 제목/요약/키워드: Heat-load test

검색결과 364건 처리시간 0.03초

하이브리드 몰드 변압기의 온도 특성 해석 (Temperature Characteristics Analysis of Hybrid Transformer)

  • 김종왕;박훈양;이향범
    • 전기학회논문지
    • /
    • 제62권7호
    • /
    • pp.931-936
    • /
    • 2013
  • In this paper, the temperature distribution of 400kVA hybrid transformer is predicted by using CFD analysis. The copper loss and iron loss which are heat source are calculated by using Joule heat and Bertotti's equation respectively. To improve the convergence of the numerical calculation and to reduce the computation time, the 1/4 model is used and the incompressible air model is used for external air. To verify analysis result, the temperature rise test and no-load test of the transformer are performed. The experiment result obtained by using thermo-graphic camera is similar to the numerical result of the CFD analysis.

Thrust - Performance Test of Ethylene-Oxygen Single-Tube Pulse Detonation Rocket

  • Hirano, Masao;Kasahara, Jiro;Matsuo, Akiko;Endo, Takuma;Murakami, Masahide
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 2004년도 제22회 춘계학술대회논문집
    • /
    • pp.205-210
    • /
    • 2004
  • The pulse detonation engine (PDE) has recently expected as a new aerospace propulsion system. The PDE system has high thermal efficiency because of its constant-volume combustion and its simple tube structure. We measured thrust of single-tube pulse detonation rocket (PDR) by two methods using the PDR-Engineering Model (full scale model) for ground testing. The first involved measuring the displacement of the PDR-EM by laser displacement meter, and the second involved measuring the time-averaged thrust by combining a load cell and a spring-damper system. From these two measurements, we obtained 130.1 N of time-averaged thrust, which corresponds to 321.2 sec of effective specific impulse (ISP). As well, we measured the heat flux in the wall of PDE tubes. The heat flux was approximately 400 ㎾/$m^2$. We constructed the PDR-Flight Mode] (PDR-FM). In the vertical flight test in a laboratory, the PDR-FM was flying and keeping its altitude almost constant during 0.3 sec.

  • PDF

Effects of Test Temperature on the Reciprocating Wear of Steam Generator Tubes

  • Hong, J.K.;Kim, I.S.
    • 한국윤활학회:학술대회논문집
    • /
    • 한국윤활학회 2002년도 proceedings of the second asia international conference on tribology
    • /
    • pp.379-380
    • /
    • 2002
  • Steam generators (S/G) of pressurized water reactors are large heat exchangers that use the heat from the primary reactor coolant to make steam in the secondary side for driving turbine generators. Reciprocating sliding wear experiments have been performed to examine the wear properties of Incoloy 800 and Inconel 690 steam generator tubes in high temperature water. In present study, the test rig was designed to examine the reciprocating and rolling wear properties in high temperature (room temperature - $300^{\circ}C$) water. The test was performed at constant applied load and sliding distance to investigate the effect of test temperature on wear properties of steam generator tube materials. To investigate the wear mechanism of material, the worn surfaces were observed using scanning electron microscopy. At $290^{\circ}C$, wear rate of Inconel 690 was higher than that of Incoloy 800. It was assumed to be resulted from the oxide layer property difference due to the a\loy composition difference. Between 25 and $150^{\circ}C$ the wear loss increased with increasing temperature. Beyond $150^{\circ}C$, the wear loss decreased with increasing temperature. The wear loss change with temperature were due to the formation of wear protective oxide layer. From the worn surface observation, texture patterns and wear particle layers were found. As test temperature increased, the proportion of particle layer increased.

  • PDF

시설원예용 수평형 지열히트펌프 시스템 실증연구 (A Study on Field test of the Horizontal Ground Source Heat Pump for Greenhouse)

  • 박용정;강신형
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2007년도 추계학술대회 논문집
    • /
    • pp.505-510
    • /
    • 2007
  • Greenhouses should be heated during nights and co Id days in order to fit growth conditions in greenhouses. Ground source heat pump(GSHP) or geothermal heat pump system(GHPs) is recognized to be outstanding heating and cooling system. Horizontal GSHP system is typically less expensive than vertical GSHP system but requires wide ground area to bury ground heat exchanger (GHE). In this study, a horizontal GSHP system with thermal storage tank was installed in greenhouse and investigated as performance characteristics. In the daytime, heating load of greenhouse is very small or needless because solar radiation increases inner air temperature. The results of study showed that the heating coefficient of performance of the heat pump($COP_h$) was 2.9 and the overall heating coefficient of performance of the system($COP_{sys}$) was 2.4. Heating energy cost was saved 76% using the horizontal GSHP system with thermal storage tank.

  • PDF

병렬 U형 현장타설 에너지파일의 열교환 효율 및 적용성 평가 (Evaluation of Heat Exchange Efficiency and Applicability for Parallel U-type Cast-in-place Energy Pile)

  • 박상우;김병연;성치훈;최항석
    • 대한토목학회논문집
    • /
    • 제35권2호
    • /
    • pp.361-375
    • /
    • 2015
  • 에너지파일은 기존의 수직밀폐형 지중열교환기를 경제적으로 대체할 수 있는 새로운 형태의 지중열교환기이다. 즉, 에너지파일은 건물의 기초 구조물과 지중열교환기의 역할을 동시에 수행하는 에너지 구조체로서, 말뚝 기초 내부에 열교환 파이프를 삽입하고 파이프를 통해 유체를 순환시켜 지반과의 열교환을 유도한다. 본 연구에서는 병렬 U형(5쌍, 8쌍, 10쌍)의 열교환 파이프를 대구경 현장타설 에너지파일에 삽입하여, 3본의 에너지파일을 실규모로 시공하였다. 또한 현장 열응답 시험(In-situ thermal response tests, TRTs)을 수행하고 시공된 현장타설 에너지파일과의 열교환 효율을 비교하기 위하여 30m 깊이의 수직밀폐형 지중열교환기를 별도로 시공하였다. 병렬 U형 현장타설 에너지파일에 대해서는 냉난방 부하를 인공적으로 주입하는 열교환 성능 평가시험을 수행하여 열교환 성능(heat exchange rate)을 평가하였다. 마지막으로 현장타설 에너지파일의 적용성 평가를 위해 산정된 상대 열교환 효율(relative heat exchange efficiency) 및 열교환 성능을 선행 연구 결과와 비교하였으며, 본 연구에서 시공된 현장타설 에너지파일은 안정적이고 효율적인 열성능을 보이는 것으로 나타났다.

외기 온도 증가가 가스 포일 스러스트 베어링의 하중지지 성능과 표면 코팅에 미치는 영향 (Effects of Increasing Ambient Temperatures on the Static Load Performance and Surface Coating of a Gas Foil Thrust Bearing)

  • 조현우;김영우;권용범;김태호
    • Tribology and Lubricants
    • /
    • 제40권3호
    • /
    • pp.103-110
    • /
    • 2024
  • Gas foil thrust bearings (GFTBs) are oil-free self-acting hydrodynamic bearings that support axial loads with a low friction during airborne operation. They need solid lubricants to reduce dry-friction between the runner and top foil and minimize local wears on their surfaces during start-up and shutdown processes. In this study, we evaluate the lift-off speeds and load capacity performance of a GFTB with Polytetrafluoroethylene (PTFE) surface coating by measuring drag torques during a series of experimental tests at increasing ambient temperatures of 25, 75 and 110℃. An electric heat gun provides hot air to the test GFTB operating in the closed booth to increase the ambient temperature. Test results show that the increasing ambient temperature delays the lift-off speed and decreases the load capacity of the test GFTB. An early developed prediction tool well predicts the measured drag torques at 60 krpm. After all tests, post inspections of the surface coating of the top foil are conducted. Scanning electron microscope (SEM) images imply that abrasive wear and oxidation wear are dominant during the tests at 25℃ and 110℃, respectively. A quantitative energy dispersive spectroscopy (EDS) microanalysis reveals that the weight percentages of carbon, oxygen, and nitrogen decrease, while that of fluorine increases significantly during the highest-temperature tests. The study demonstrates that the increasing ambient temperature noticeably deteriorates the static performances and degrades the surface coating of the test GFTB.

고강도 강판 저항 점용접부 강도 및 파단에 미치는 Paint Baking의 영향 (The Effect of Paint Baking on the Strength and Failure of Spot Welds for Advanced High Strength Steels)

  • 최철영;이동윤;김인배;김양도;박영도
    • 대한금속재료학회지
    • /
    • 제49권12호
    • /
    • pp.967-976
    • /
    • 2011
  • Conventional fracture tests of resistance spot welds have been performed without consideration of the paint baking process in the automobile manufacturing line. The aim of this paper is to investigate the effect of the paint baking process on load carrying capacity and fracture mode for resistance spot welded 590 dual phase (DP), 780DP, 980DP, 590 transformation in duced plasticity (TRIP), 780TRIP and 1180 complex phase (CP) steels. With paint baking after resistance spot welding, the l-shape tensile test (LTT) and nano-indentation test were conducted on the as-welded and paint baked samples. Paint baking increased the load-carrying capacity of the resistance spot welded samples and improved the fracture appearance from partial interfacial fracture (PIF) to button fracture (BF). Improvement in fracture appearance after LTT is observed on weldments of 780 MPa grade TRIP steels, especially in the low welding current range with paint baking conditions. The higher carbon contents (or carbon equivalent) are attributed to the low weldability of the resistance spot welding of high strength steels. Improvement of the fracture mode and load carrying ability has been achieved with ferrite hardening and carbide formation during the paint baking process. The average nano-indentation hardness profile for each weld zone shows hardening of the base metal and softening of the heat affected zone (HAZ) and the weld metal, which proves that microstructural changes occur during low temperature heat treatment.

2 성분 혼합물을 작동유체로 사용하는 태양열 집열기용 히트파이프의 실험적 연구 (An Experimental Study of a Heat pipe with Binary Mixture Working Fluid for Solar Collector)

  • 정의국;부준홍;정원복
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2003년도 추계학술대회
    • /
    • pp.13-18
    • /
    • 2003
  • Heat pipes with binary mixture fabricated and tested for applications where condenser temperature is in a range of $10^{\circ}C$ to $130^{\circ}C$. The pipe materials 8.0 mm O.D. cupper tube and the working fluids are ethanol-water mixtures. The total length of test of the heat pipe was 1710mm in which evaporator section was 1570mm, adiabatic section was 50mm and condenser section was 90mm. Mixing ratios of ethanol and water could be variable in mole fraction. Temperature of condenser section was $10^{\circ}C$, $80^{\circ}C$ and $130^{\circ}C$. Heat pipe performance experimental study was accomplished with change of mixing ratio in these temperatures. The fill charge ratio was 20% of the heat pipe volume. Wick structure was woven-wire and method of experimental work was that thermal load was increased 20W step until the heat pipe wall temperature reached at $150^{\circ}C$. Results were following: At coolant $10^{\circ}C$ and $130^{\circ}C$, mixing ratio that have beat thermal performance was 0.8M+ and at coolant $80^{\circ}C$, was 0.3 ${\sim}$ 0.5 M+.

  • PDF

기술자립형 5kW 연료전지 시스템 구축을 위한 고효율 연료변환기 개발 (The development of High efficiency fuel processor for technical independence 5kW class fuel cell system)

  • 이수재;최대현;전희권
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2010년도 춘계학술대회 초록집
    • /
    • pp.123.2-123.2
    • /
    • 2010
  • Fuel Cell cogeneration system is a promising technology for generating electricity and heat with high efficiency of low pollutant emission. We have been developed 5kW class fuel cell cogeneration system for commercial and residential application. The fuel processor is a crucial part of producing hydrogen from the fossil fuels such as LNG and LPG. The 5kW class high efficiency fuel processor consists of steam reformer, CO shift converter, CO preferential oxidation(PrOx) reactor, burner and heat exchanger. The one-stage CO shift converter process using a metal oxide catalyst was adopted. The efficiency of 5 kW class fuel processor shows 75% based on LHV. In addition, for the purpose of continuous operation with load fluctuations in the commercial system for residential use, load change of fuel processor was tested. Efficiency of 30%, 50%, 70% and 100% load shows 75%, 75%, 73% and 72%(LHV), respectively. Also, during the load change conditions, the product gas composition was stable and the outlet CO concentration was below 5 ppm. The Fuel processor operation was carried out in residential fuel cell cogeneration system with fuel cell stack under dynamic conditions. The 5kW class fuel processor have been evaluated for long-term durability and reliability test including with improvement in optimal operation logic.

  • PDF

창호의 광학적 특성에 따른 ZeSH의 일사취득 및 난방부하에 관한 민감도 분석 (A Sensitivity Analysis about Solar Heat Gain and Heating Load of ZeSH According to Optical Characteristics of Window system)

  • 손선우;백남춘;서승직
    • 한국태양에너지학회:학술대회논문집
    • /
    • 한국태양에너지학회 2009년도 춘계학술발표대회 논문집
    • /
    • pp.66-71
    • /
    • 2009
  • To reduce the building energy consumption, the major advanced nations are conducting actively many researches on so called a "self-sufficient building(or other words zero energy building)" which can support its required energy by itself. Given this background, KIER(Korea Institute of Energy Research) built full size test-bed of the zero energy solar house in early 2002, and has studied on the self-sufficient heating load up to now. We analyse the sensitivity between the heating load and the solar radiation gain according to the change the effective transmittance of windows. The authors classified 9 cases by solar transmittance of glass. The results demonstrate the solar radiation amount is 0.466 MWh from the eastern zone of Fl.,1(the first floor), 0.332 MWh from Fl.,2(the second floor), 1.194 MWh form the southern zone of F1., and 0.822 MWh from the southern zone of Fl.,2 on the case 1(each cases are classified by window types). On the case 9, the solar radiation amount is 3.127 MWh, 2.662 MWh, 8.799 MWh and 6.078 MWh from the same condition. For the Fl.,1, the amount of Heat Load that is saved per year ranged 10.5 to 48 %, and the reduction was anywhere from 0.2 to 17.9% for Fl.,2

  • PDF