• Title/Summary/Keyword: Heat-island

Search Result 491, Processing Time 0.029 seconds

An Analysis of Rational Green Area Ratio by Land Use Types for Mitigating Heat-Island Effects (도시열섬완화를 위한 토지 이용 유형별 합리적 녹지율 분석)

  • SONG, Bong-Geun;PARK, Kyung-Hun
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.18 no.2
    • /
    • pp.59-74
    • /
    • 2015
  • The purpose of this study is to analyze reasonable green area ratios for mitigating urban heat island considering various land use types. Land uses of 5 types such as single residential, multi residential, commercial area, public facility, and industrial area were considered. Green areas were extracted from the tree attribution of land cover. Effect of urban heat island was analysed by the surface temperature of ASTER thermal infrared radiance scanned daytime and nighttime. Mitigation effect of green area at daytime was higher than nighttime. Surface temperature of green area was low in single residential at daytime. But the difference of surface temperature by each land use type was small. The effect of surface temperature mitigation of green area was lower in industrial area. The results of reasonable green area ratios for mitigating urban heat island indicate that surface temperature was the lowest with green area ratio of 40~50% in single residential, multi residential, and commercial area at daytime. Surface temperature of nighttime was not changed much by green area ratios. Therefore, the results of this study will be suggested in urban development planning to construct effectively green area for mitigating urban heat island.

A herbological study on the wild edible plants of Ulleung island (울릉도 특산 산나물에 대한 본초학적 고찰)

  • Seo, Bu-Il
    • The Korea Journal of Herbology
    • /
    • v.27 no.2
    • /
    • pp.31-36
    • /
    • 2012
  • Objective : For the purpose of making use the wild edible plants of Ulleung island smoothly, this study was designed. Method : For the first time, I searched the wild edible plants of Ulleung island from various data. And I examined herbological books and research papers on the wild edible plants of Ulleung island. Result : The herbaceous plants in Ulleung island were 12 family and 22 species, Compositae and Liliaceae plants take the highest number of them. The woody plants in Ulleung island were 1 family(Araliaceae) and 2 species. The herbal medicines that originated from the wild edible greens of Ulleung island were 25 species. The herbal medicines that have the effects of clearing away heat(淸熱), eliminating toxin(解毒), subduing swelling(消腫) and promoting blood circulation to remove blood stasis(活血祛瘀) take the highest number of the effects of these herbal medicines. Conclusion : For the purpose of making use the wild edible plants of Ulleung island smoothly, we should recognize not only medical benefits but also matters that pay special attention.

A Consideration of the Correlation Between the Change of Surface Temperature on the Roof and the Adoption of the Green Roof vs Non Green Roof -Application in DaeJeon Area- (옥상녹화와 비 옥상녹화 표면의 온도변화 상관관계 고찰 -대전지역을 중심으로-)

  • Lee, Eung-Jik;Kim, Jun-Hui
    • Journal of the Korean Solar Energy Society
    • /
    • v.32 no.6
    • /
    • pp.134-140
    • /
    • 2012
  • With rapid modernization and industrialization, many urban areas are becoming overcrowded at a rapid pace and such urban ecological problems as heat island effect are becoming serious due to the reduced green zones resulted from the indiscriminate development. To solve this problem, ecological park, constructed wetlands, and greening on the elevation, balcony, and roof of a building that have the structure and function very close to the state of nature are currently being promoted at the urban or regional level. Especially green roof will be able to not only provide the center of a city with a significant portion of green area but also help to relive heat island effect and improve micro climate by preventing concrete of a building from absorbing heat. According to a recent study, the temperature of green roof in the summer season shows a lower temperature than the outdoor temperature, but inversely the concrete surface shows a higher temperature. Accordingly, this study measured the surface temperature of buildings with green roof in Daejeon area in order to determine how the green roof system would have an impact on the distribution of surface temperature and did a comparative analysis of the distribution of the surface temperature of green roof vs non-green roof based on these theoretical considerations. As a result, it was found that the surface temperature of green roof was lower by $4{\sim}7^{\circ}C$ than that of non-green roof. This is expected to contribute to the mitigation of urban heat island effects.

Analysis of the Surface Urban Heat Island Changes according to NewTowns Development and Correlation with Urban Morphology (신도시 개발에 따른 표면 열섬현상 변화분석 및 도시 형태와의 상관관계)

  • Kyungil Lee
    • Korean Journal of Remote Sensing
    • /
    • v.39 no.5_3
    • /
    • pp.921-932
    • /
    • 2023
  • Land cover change due to urban population concentration and urban expansion can cause various environmental problems such as urban heat islands. In particular, New towns are considered an appropriate study site to analyze changes in urban climate due to rapid urbanization in a short period. This study used Landsat satellite imagery to compare and analyze the land cover changes before and after the development of two new towns with different plans, and the resulting changes in surface urban heat island (SUHI) phenomena. Correlation analysis was also conducted between urban structural features that may affect the SUHI intensity. The results of the analysis confirm the rapid change in land cover as new town development progresses and the direct intensification of the SUHI phenomenon. This study confirms the differences in SUHI caused by different urban plans and suggests the need for three-dimensional urban planning to improve the thermal environment.

Comparative Analysis of the Effects of Heat Island Reduction Techniques in Urban Heatwave Areas Using Drones (드론을 활용한 도시폭염지역의 열섬 저감기법 효과 비교 분석)

  • Cho, Young-Il;Yoon, Donghyeon;Shin, Jiyoung;Lee, Moung-Jin
    • Korean Journal of Remote Sensing
    • /
    • v.37 no.6_3
    • /
    • pp.1985-1999
    • /
    • 2021
  • The purpose of this study is to apply urban heat island reduction techniques(green roof, cool roof, and cool pavements using heat insulation paint or blocks) recommended by the Environmental Protection Agency (EPA) to our study area and determine their actual effects through a comparative analysis between land cover objects. To this end, the area of Mugye-ri, Jangyu-myeon, Gimhae, Gyeongsangnam-do was selected as a study area, and measurements were taken using a drone DJI Matrice 300 RTK, which was equipped with a thermal infrared sensor FLIR Vue Pro R and a visible spectrum sensor H20T 1/2.3" CMOS, 12 MP. A total of nine heat maps, land cover objects (711) as a control group, and heat island reduction technique-applied land covering objects (180) were extracted every 1 hour and 30 minutes from 7:15 am to 7:15 pm on July 27. After calculating the effect values for each of the 180 objects extracted, the effects of each technique were integrated. Through the analysis based on daytime hours, the effect of reducing heat islands was found to be 4.71℃ for cool roof; 3.40℃ for green roof; and 0.43℃ and -0.85℃ for cool pavements using heat insulation paint and blocks, respectively. Comparing the effect by time period, it was found that the heat island reduction effect of the techniques was highest at 13:00, which is near the culmination hour, on the imaging date. Between 13:00 and 14:30, the efficiency of temperature reduction changed, with -8.19℃ for cool roof, -5.56℃ for green roof, and -1.78℃ and -1.57℃ for cool pavements using heat insulation paint and blocks, respectively. This study was a case study that verified the effects of urban heat island reduction techniques through the use of high-resolution images taken with drones. In the future, it is considered that it will be possible to present case studies that directly utilize micro-satellites with high-precision spatial resolution.

Green-infra Strategies for Mitigating Urban Heat Island (도시열섬현상완화를 위한 그린인프라 전략)

  • Park, Chae-Yeon;Lee, Dong-Kun;Kwon, Eu-gene;Her, Min-ju
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.20 no.5
    • /
    • pp.67-81
    • /
    • 2017
  • Because of lack of accurate understanding of the mechanism of urban heat island (UHI) phenomenon and lack of scientific discussion, it is hard to come up with effective measures to mitigate UHI phenomenon. This study systematically described the UHI and suggested the solutions using green-infrastructure (green-infra). The factors that control UHI are very diverse: radiant heat flux, latent heat flux, storage heat flux, and artificial heat flux, and the air temperature is formed by the combination effect of radiation, conduction and convection. Green-infra strategies can improve thermal environment by reducing radiant heat flux (the albedo effect, the shade effect), increasing latent heat flux (the evapotranspiration effect), and creating a wind path (cooling air flow). As a result of measurement, green-infra could reduce radiant heat flux as $270W/m^2$ due to shadow effect and produce $170W/m^2$ latent heat flux due to evaporation. Finally, green-infra can be applied differently on the macro(urban) scale and micro scale, therefore, we should plan and design green-infra after the target objects of structures are set.

Assessment of the Urban Heat Island Effects with LANDSAT and KOMPSAT-2 Data in Cheongju (LANDSAT과 KOMPSAT-2 데이터를 이용한 청주지역 도시열섬효과의 평가)

  • Na, Sang-Il;Park, Jong-Hwa
    • Korean Journal of Agricultural Science
    • /
    • v.39 no.1
    • /
    • pp.87-95
    • /
    • 2012
  • Land surface temperature (LST) is an important factor in human health, thermal environment, heat balance, global change studies, and as control for climate change. The objective of this study was to assess the influence of Urban Heat Island (UHI) Effects on the LST and NDVI in Cheongju, Korea. The aim was to evaluate the effect of urban thermal environment for LST comparison of satellite-derived and in situ measured temperature. In this study, LANDSAT TM and KOMPSAT scene were used. The results indicated that the minimum LST is observed over dense forest as about $21{\sim}25^{\circ}C$ and maximum LST is observed over industrial area of about $28{\sim}32^{\circ}C$. The estimated LST showed that industrial area, bare soils and built-up areas exhibit higher surface temperatures, while forest, water bodies, agricultural croplands, and dense vegetations have lower surface temperatures during the summer daytime. Result corroborates the fact that LST over land use/land cover (LULC) types are greatly influenced by the amount of vegetation and water bodies present. The LST of industrial area and urban center is higher than that of suburban area, so it is clearly proved that there are obvious UHIE in Cheongju.

Analysis of Urban Heat Island (UHI) Alleviating Effect of Urban Parks and Green Space in Seoul Using Deep Neural Network (DNN) Model (심층신경망 모형을 이용한 서울시 도시공원 및 녹지공간의 열섬저감효과 분석)

  • Kim, Byeong-chan;Kang, Jae-woo;Park, Chan;Kim, Hyun-jin
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.48 no.4
    • /
    • pp.19-28
    • /
    • 2020
  • The Urban Heat Island (UHI) Effect has intensified due to urbanization and heat management at the urban level is treated as an important issue. Green space improvement projects and environmental policies are being implemented as a way to alleviate Urban Heat Islands. Several studies have been conducted to analyze the correlation between urban green areas and heat with linear regression models. However, linear regression models have limitations explaining the correlation between heat and the multitude of variables as heat is a result of a combination of non-linear factors. This study evaluated the Heat Island alleviating effects in Seoul during the summer by using a deep neural network model methodology, which has strengths in areas where it is difficult to analyze data with existing statistical analysis methods due to variable factors and a large amount of data. Wide-area data was acquired using Landsat 8. Seoul was divided into a grid (30m × 30m) and the heat island reduction variables were enter in each grid space to create a data structure that is needed for the construction of a deep neural network using ArcGIS 10.7 and Python3.7 with Keras. This deep neural network was used to analyze the correlation between land surface temperature and the variables. We confirmed that the deep neural network model has high explanatory accuracy. It was found that the cooling effect by NDVI was the greatest, and cooling effects due to the park size and green space proximity were also shown. Previous studies showed that the cooling effects related to park size was 2℃-3℃, and the proximity effect was found to lower the temperature 0.3℃-2.3℃. There is a possibility of overestimation of the results of previous studies. The results of this study can provide objective information for the justification and more effective formation of new urban green areas to alleviate the Urban Heat Island phenomenon in the future.

Study on the Urban Heat Island(UHI) using Remote Sensing data

  • Kyung, H.M.;Kim, Y.S.;Park, K.W.
    • Proceedings of the KSRS Conference
    • /
    • 2003.11a
    • /
    • pp.846-848
    • /
    • 2003
  • Analysis of UHI in Busan region using Landsat TM data. Between 1987 and 1997 surface temperature increased clearly. Land usage of Busan is construed that instigate UHI changing into industry and commerce area. Also, intensity of UHI in surface temperature appeared strongly in industrial area and business area. On the contrary, residential area, mountain area, suburb area did not appear strongly.

  • PDF

Influence of New Town Development on the Urban Heat Islands - ln the Case of Pan-Gyo Area and Bun-Dang New Town - (신도시 개발이 도시열섬 형성에 미치는 영향 - 분당신도시와 판교지역을 중심으로 -)

  • 송영배
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.30 no.4
    • /
    • pp.37-46
    • /
    • 2002
  • The main purpose of this research is to discuss the urban heat island which will be caused by urbanization, especially by the construction of new town on a wide green zone. Over the last ten years, five new towns have been developed around the Seoul metropolitan area. However these new towns become bedroom communities and create traffic problems between Seoul and its surrounding areas because of an increase in population and a lack of roads and other infrastructures. The construction of another such new town is under consideration in the Pan-gyo area. But it is important that Pan-gyo remains a wide green zone. Many studies show that green space can play an important role in improving urban eco-meteorological, ameliorative capability and air hygiene. The objective of this study is to analyze the urban heat islands of Bund-Dang Si which was constructed in 1996 and of the Pan-Gyo area planned as new town. To investigate the local thermal environment and its negative effects caused by change of the land use type and urbanization we used LANDSAT TM images for extraction of urban surface temperature according to change of land use over 15 years. These data were analyzed together with digital land use and topographic data. As a study result, we found that the thermal island of this area from 1985 to 1999 rapidly increased with a difference of mean temperature of more than 12'E. Before construction of Bun-Dang Si the temperature of this area was the same as the forest, but during the new town construction in 1991, an urban heat island developed. The temperature of forest with a size of over 50% of the investigation area was lowest, which leads us to conclude that the forest cools the urban and its surroundings. The mean temperature of the residential and commercial area is more than +4.5$^{\circ}C$ higher then forest, so this method of land use is the main factor increasing the urban heat island. Urban heat islands and green space play an important role in urban wind systems, i.e. Thermal Induced Air Exchange and Structural Wind Circulation, because of their special properties with regard to energy balance between constructed urban and land. The skill to allocate land use types in urban areas is a very important planning device to reduce air pollution and induce the fresh cold air from green space. An urban climatic experiment featuring a numerical wind simulation study to show the air corridor will be published in a following research paper.