• Title/Summary/Keyword: Heat-generating Block

Search Result 6, Processing Time 0.023 seconds

Analysis of Three-Dimensional Mixed Convection Flow About Uniformly Distributed Heat-Generating Blocks on a Conductive Wall (기판 위에 분포된 발열블록 주위의 3차원 혼합대류 열전달 해석)

  • Yun, Byeong-Taek;Choi, Do Hyung
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.23 no.1
    • /
    • pp.1-11
    • /
    • 1999
  • The three-dimensional laminar mixed convection flow between the conductive printed circuit boards. on which the heat generating rectangular blocks are uniformly distributed, has been examined in the present study. The flow and heat-transfer characteristics are assumed to be pseudo periodic in the streamwise direction and symmetric in the cross-stream direction. Using an algorithm of SIMPLER, the continuity equation. the Navier-Stokes equations and the energy equation are solved numerically in the three-dimensional domain Inside the channel. The convective derivative terms are discretized by the QUICK scheme to accurately capture the flow field. The flow and the heat transfer characteristics are thoroughly examined for various Re and Gr.

Forced Convection in a Flow Channel with Multiple Obstacles (다수의 장애물을 가진 유동채널에서의 강제 대류에 관한 연구)

  • Nam, Pyung-Woo;Cho, Sung-Hwan
    • Solar Energy
    • /
    • v.9 no.1
    • /
    • pp.62-69
    • /
    • 1989
  • This analysis is to investigate the influence of inflow angle when cooling air flows into PC (Printed Circuit) board channels. Flow between PC board channels with heat generating blocks is assumed laminar, incompressible, two-dimensional. Geometric parameters (block spacing (S), block height (H), block width (W) and channel height (L)) are held fixed. Inflow angle variations are $-10^{\circ},\;0^{\circ},\;10^{\circ}$, where uniform heat flux per unit axial length Q (W/m) from heated block surfaces is generated. The governing equations for velocity and temperature are solved by SIMPLE (Semi-Implicit Method Pressure for Linked Equation) algorithm. Nusselt number on each block surfaces is analyzed after a numerical calculation result. The result shows that the assumption on parallel inflow (inflow angle to channel, $0^{\circ}$) to PC board channels can be used without large error even when inflow' angle is varied.

  • PDF

An Experimental Study on the Natural Convection Heat Transfer of Air-cooling PEMFC in a Enclosure (밀폐된 공간 내 공랭식 PEMFC의 자연대류 열전달에 대한 실험적 연구)

  • LEE, JUNSIK;KIM, SEUNGGON;SOHN, YOUNGJUN
    • Journal of Hydrogen and New Energy
    • /
    • v.27 no.1
    • /
    • pp.42-48
    • /
    • 2016
  • This study presents an experiment investigation on natural convection heat transfer of air-cooling Proton exchange membrane fuel cells (PEMFCs) in a enclosure system for unmanned aerial vehicles (UAVs). Considered are replacing fuel cell stack with Aluminum block for heat generating inside a enclosure chamber. The volume ratio of fuel cell stack and chamber for simulation to the actual size of aerial vehicle is 1 to 15. The parameters considered for experimental study are the environmental temperature range from $25^{\circ}C$ to $-60^{\circ}C$ and the block heat input of 10 W, 20 W and 30 W. Effect of the thermal conductivity of the block and power level on heat transfer in the chamber are investigated. Experimental results illustrate the temperature rise at various locations inside the chamber as dependent upon heat input of fuel cell stack and environmental temperature. From the results, dimensionless correlation in natural convection was proposed with Nusselt number and Rayleigh number for designing air-cooling PEMFC powered high altitude long endurance (HALE) UAV.

Heating Transferring Charcteristics of Cement Mortar Block with Waste CNT and Conduction Activator (폐CNT와 전도촉진재를 혼입한 시멘트 모르타르 블록의 발열 전도 특성)

  • Koo, Hounchul;Kim, Woon-Hak;Oh, Hongseob
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.10 no.2
    • /
    • pp.176-183
    • /
    • 2022
  • High-purity waste CNTs were mixed into cement mortar to manufacture heat-generating concrete that can use low voltage power, and carbon fiber and waste cathode materials were also used improve the conductivity of the mortar. The waste CNTs were analyzed to have a high concentration of multi-walled CNTs, and substituted liquid type waste CNTs were used during mortar mixing in order to increase dispersibility. The temperature change of the mortar with CNT was evaluated when using electric power below DC 24 V in order to utilize a small self-generation facility such as small solar power module when the mortar heats up and to minimize electromagnetic waves. When liquid-type waste CNTs were applied and a voltage of DC 24 V was introduced, it rose to 60 ℃ in a 200 × 100 × 50 mm mortar block specimen. The field applicability of self heating mortar with waste CNT was sufficient and also the amount of change in heat energy in mortar with liquid type waste CNT, carbon fiber and waste cathode materials is more effective compared to it of other variables.

DEVELOPMENT OF A CORE THERMO-FLUID ANALYSIS CODE FOR PRISMATIC GAS COOLED REACTORS

  • Tak, Nam-Il;Lee, Sung Nam;Kim, Min-Hwan;Lim, Hong Sik;Noh, Jae Man
    • Nuclear Engineering and Technology
    • /
    • v.46 no.5
    • /
    • pp.641-654
    • /
    • 2014
  • A new computer code, named CORONA (Core Reliable Optimization and thermo-fluid Network Analysis), was developed for the core thermo-fluid analysis of a prismatic gas cooled reactor. The CORONA code is targeted for whole-core thermo-fluid analysis of a prismatic gas cooled reactor, with fast computation and reasonable accuracy. In order to achieve this target, the development of CORONA focused on (1) an efficient numerical method, (2) efficient grid generation, and (3) parallel computation. The key idea for the efficient numerical method of CORONA is to solve a three-dimensional solid heat conduction equation combined with one-dimensional fluid flow network equations. The typical difficulties in generating computational grids for a whole core analysis were overcome by using a basic unit cell concept. A fast calculation was finally achieved by a block-wise parallel computation method. The objective of the present paper is to summarize the motivation and strategy, numerical approaches, verification and validation, parallel computation, and perspective of the CORONA code.

A Study of the Scene-based NUC Using Image-patch Homogeneity for an Airborne Focal-plane-array IR Camera (영상 패치 균질도를 이용한 항공 탑재 초점면배열 중적외선 카메라 영상 기반 불균일 보정 기법 연구)

  • Kang, Myung-Ho;Yoon, Eun-Suk;Park, Ka-Young;Koh, Yeong Jun
    • Korean Journal of Optics and Photonics
    • /
    • v.33 no.4
    • /
    • pp.146-158
    • /
    • 2022
  • The detector of a focal-plane-array mid-wave infrared (MWIR) camera has different response characteristics for each detector pixel, resulting in nonuniformity between detector pixels. In addition, image nonuniformity occurs due to heat generation inside the camera during operation. To solve this problem, in the process of camera manufacturing it is common to use a gain-and-offset table generated from a blackbody to correct the difference between detector pixels. One method of correcting nonuniformity due to internal heat generation during the operation of the camera generates a new offset value based on input frame images. This paper proposes a technique for dividing an input image into block image patches and generating offset values using only homogeneous patches, to correct the nonuniformity that occurs during camera operation. The proposed technique may not only generate a nonuniformity-correction offset that can prevent motion marks due to camera-gaze movement of the acquired image, but may also improve nonuniformity-correction performance with a small number of input images. Experimental results show that distortion such as flow marks does not occur, and good correction performance can be confirmed even with half the number of input images or fewer, compared to the traditional method.