• Title/Summary/Keyword: Heat-drying

Search Result 582, Processing Time 0.029 seconds

Drying and Low Temperature Storage System for Agricultural Products Using the Air to Air Heat Pump (I) - Drying Performance - (히트펌프를 이용한 농산물 건조 및 저온저장 시스템 (I) - 건조 성능 -)

  • Kang, Youn-Ku;Han, Chung-Su;Keum, D.H.
    • Journal of Biosystems Engineering
    • /
    • v.32 no.1 s.120
    • /
    • pp.20-29
    • /
    • 2007
  • Korean farmers have purchased agricultural dryer and low temperature storage system apart. In this study, the system was designed and constructed to investigate the practical application possibility of the air to air heat pump as drying and low temperature storage system for agricultural products with providing basic data. The performance and drying characteristics of the system evaluated by drying red pepper. The value of coefficient of performance of the system for heating was from 1.8 to 2.2 when ambient air temperature varied from 13$^{\circ}C$ to 23$^{\circ}C$. For operating the heat pump as dryer for drying red pepper by setting three drying air temperature of 50, 55 and 60$^{\circ}C$, specific moisture extraction rates meaning amount of energy consumption for removing moisture of 1kg from red pepper were 1.095, 1.017 and 1.094 kg$_{water}$/kWh, respectively. The drying period up to moisture ratio of 0.02 were 31, 26 and 21 hour, respectively. The lightness, redness, yellowness and chroma differences of red pepper dried by the heat pump dryer were lowered than those of red pepper dried by conventional heated air dryer except for yellowness difference at drying air temperature of 60$^{\circ}C$.

Sludge Drying Method Using Microwave Drying Device and Heat Transfer Medium Oil (마이크로웨이브와 열전매체유를 이용한 슬러지 건조방법)

  • Kim, Yong-Ryul;Son, Min-Il
    • Journal of the Korean Applied Science and Technology
    • /
    • v.28 no.3
    • /
    • pp.367-373
    • /
    • 2011
  • This research is a basic researching process for producing solid fuel that mixing paper sludge and Heat Transfer Medium Oil. Under the presence of Heat Transfer Medium Oil, paper sludge is heated and dried with home appliance microwave for comparing drying efficiency and energy efficiency of different types of drying method. As a result, Heat Transfer Medium Oil and paper mixing case of drying method, OMD, is the most efficient way to shorten the time for evaporating moisture in the paper sludge. In addition, heat transfer effect and density is increased with adding Heat Transfer Medium Oil by microwave. Future more, OMD's energy cost for evaporating whole moisture is 78% cheaper than MD. Also, OMD process shows the best energy efficiency with comparing other process. Evaporation rate of paper sludge evaporation process with microwave is 11.66% increased by adding Heat Transfer Medium Oil 150g. Preheating Heat Transfer Medium Oil or improving different ways injecting Heat Transfer Medium Oil is a good way to increase a rate of initiative moisture evaporation process.

Seasoning of Commercial Wood Using Solar Energy (태양에너지를 이용한 유용목재의 건조)

  • Jung, Hee-Suk;Lee, Hyoung-Woo;Lee, Nam-Ho;Lee, Sang-Bong
    • Journal of the Korean Wood Science and Technology
    • /
    • v.16 no.4
    • /
    • pp.10-39
    • /
    • 1988
  • This study investigated the temperatures and relative humidities in the semi-greenhouse type solar dryer with a black rock-bed heat storage and without heat storage and outdoor temperature and relative humidity at 9 a.m. and 2 p.m.. A comparison was made of the drying rates, final moisture contents, moisture content distributions, casehardening stresses, drying defects, volumetric shrinkage of dried lumber for solar- and air-drying from the green condition of mixtures of Douglas-fir, lauan, taun, oak and sycamore 25mm- and 50 mm-thick lumber during the same period for four seasons, and heat efficiencies for solar dryer with and without the heat storage for saving of heat energy and the cost of lumber drying using the solar energy. The results from this study were summarized as follows: I. The mean weekly temperatures in the solar dryers were 3 to $6^{\circ}C$ at 9 a.m. and 9 to $13^{\circ}C$ at 2 p.m. higher than mean outdoor temperature during all the drying period. 2. The mean weekly relative humidities in the solar dryers were about 1 to 19% at 9 a.m. higher than the outdoor relative humidity. and the difference between indoor and outdoor relative humidity in the morning was greater than in the afternoon. 3. The temperatures and relative humidities in the solar dryer with and without the heat storage were nearly same. 4. The overall solar insolation during the spring months was highest and then was greater in the order of summer, atumm, and winter month. S. The initial rate of solar drying was more rapid than that of air drying. As moisture content decreased, solar drying rate became more rapid than that of air drying. The rates of solar drying with and without heat storage were nearly same. The drying rate of Douglas-fir was fastest and then faster in the order of sycamore, lauan, taun and oak. and the faster drying rate of species, the smaller differences of drying rates between thicknesses of lumber. The drying rates were fastest in the summer and slowest in the winter. The rates of solar drying during the spring were more slowly in the early stage and faster in the later stage than those during the autumn. 6. The final moisture contents were above 15% for 25mm-thick air dried and about 10% for solar dried lumber, but the mean final MCs for 50mm-thick lumber were much higher than those of thin lumber. The differences of final MC between upper and lower course of pile for solar drying were greater than those of pile for air drying. The differences of moisture content between the shell and the core of air dried lumbers were greater than those of solar dried lumber, smallest in the drying during summer and greatest in the drying during winter among seasons. 7. Casehardening stresses of 25mm- and 50mm-thick dried lumber were slight, casehardening stress of solar dried lumber was severer than that of air dried lumber and was similar between solar dried lumber with and without heat storage, Casehardening stresses of lumber dried during spring were slightest and then slighter in the order of summer, autumn, and winter. Casehardening stresses of Douglas -fir, sycamore and lauan were slight, comparing with those of taun and oak. 8. Maximum initial checks of 25mm-thick lumber occurred above and below fiber saturation point and those of 50mm-thick lumber occurred in the higher moisture content than thin lumber. As the moisture content decreased, most of checks were closed and didn't show distinct difference of the degree of checks among drying methods. The degree of checks were very slight in case of Douglas-fir and lauan, and severe in case of taun and oak. The degree of checks for 50mm-thick lumber were severer than those for 25mm-thick lumber. 9. The degree of warpage showed severe in case of oak and sycamore lumber, but no warping was found in case of Douglas-fir, lauan and taun. 10. The volumetric shrinkages of taun and oak were large and medium in case of Douglas-fir, lauan and sycamore. 11. Heat efficiencies of solar dryer with heat storage were 6.9% during spring, 7.7% during summer, 12.1% during autumn and 4.1% during winter season. Heat efficiency of solar dryer with heat storage was slightly greater than that of without heat storage. As moisture content of lumber decreased, heat efficiency decreased.

  • PDF

Drying Characteristics of Carrot and Green Pumpkin Slices in Waste Heat Dryer

  • Lee, Gwi-Hyun
    • Journal of Biosystems Engineering
    • /
    • v.37 no.1
    • /
    • pp.36-43
    • /
    • 2012
  • Purpose: Drying characteristics of the sliced carrot and green pumpkin were investigated by using the waste heat dryer. Methods: The effects of drying temperature ($T$) and slice thickness affecting drying time were analyzed. Mathematical models for the drying curves were determined with statistical analysis of drying data. Effective diffusivity was determined for the slices of carrot and green pumpkin under various drying conditions. Results: Drying time was reduced at the drying conditions of thinner slice and higher drying temperature. Moisture ratio ($MR$) according to drying time ($t$) was well presented as an exponential function at all of drying conditions for the slices of carrot and green pumpkin with the determination coefficient ($r^2$) of >0.99. The values of effective diffusivity ($D_{ff}$) of the slices for carrot and green pumpkin were increased with increasing the drying temperature. The relationship between Ln($D_{ff}$) and $1/T$ was linear with the determination coefficient ($r^2$) of >0.97. Conclusions: Drying model was well established as an exponential function at all of drying conditions for drying samples.

Modeling of the Drying Process in Paper Plants

  • Hwang, Ki-Seok;Yeo, Yeong-Koo;Yi, Sung-Chul;Dongjun Seo;Hong Kang
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.35 no.5
    • /
    • pp.53-61
    • /
    • 2003
  • In this study a model for the drying process in paper production plants was developed based on the mass and heat balances around drying cycles. Relationships for the heat transfer coefficients between the web and the air as well as between the drying cylinder and the web were extracted from the closed-loop plant operation data. It was found that the heat transfer coefficients could be represented effectively in terms of moisture content, basis weight and reel velocity. The effectiveness of the proposed model was illustrated through numerical simulations. From the comparison with the operation data, the proposed model represents the paper plant being considered with sufficient accuracy.

Changes in Days to Drying and Some Chemical Components by Different Drying Methods in Paeoniae radix (건조방법에 따른 작약근 건조 소요일수 및 성분 변화)

  • ;Kwang-He Kang
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.41 no.3
    • /
    • pp.362-369
    • /
    • 1996
  • Seven different drying methods were tested in peony roots of Euisung cultivar, harvested in February, in three year's old plant. The roots were selected in length and diameter and half of the samples were removed cork-layers to compare the effects of cork-layer in processing of drying. The 3$0^{\circ}C$ heat drying without cork-layer reduced in days to drying by five days compared to those of the with cork-layers at the same temperature. The 5$0^{\circ}C$ heat drying after cork-layers removed was the most effective in days to drying. In quality of skin color of the 5$0^{\circ}C$ heating was worse to compare with the lower drying temperature. In the drying at room temperature and the heat drying at lower temperature, the paeoniflorin content in drying after cork-layers removed were higher than that of the drying with cork-layers. However, in the boiling water treatment, the paeoniflorin contents in drying after cork-layers removed were lower than those of with cork-layers. In heat drying, paeoniflorin content showed a decreasing tendency to increase of drying temperature. Total sugars in the peony roots showed a decreasing tendency according to the drying temperature increasing, but starch concentration showed a increasing tendency at the same condition. Concentrations of crude protein, crude fiber and crude ash were showed no differences in various drying methods and the materials with or without cork-layers. Relationships between the paeoniflorin and total sugars, and the paeoniflorin and starch were different significantly by the materials of cork-layers removed or not. The 30~4$0^{\circ}C$ heat drying without cork-layers was the most advisable condition for drying in paeoniflorin concentration, days to drying and skin color after drying.

  • PDF

A Study on the Heat and Mass Transfer Characteristics of Vacuum Freeze Drying Process for Porous Media (다공성 물길의 진공동결건조과정에서 얼 및 물질전달 특성에 관한 연구)

  • c. s. song
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.25 no.6
    • /
    • pp.1341-1352
    • /
    • 2001
  • Vacuum freeze drying process by which frozen water in a drying material is removed sublimation under vacuum condition, is now applied to various industrial field such as the manufacturing and packaging of pharmaceuticals in pharmaceutical industry, the drying of bio- products in bio-technology industry, the treatment of various quality food stuff in food technology, and so on. The Knowledge about the heat and mass transfer characteristics related with the vacuum freeze drying process is crucial to improve the efficiency of the process as well as the quality of dried products. In spite of increasing needs for understanding of the process, the research efforts in this fields are still insufficient. In this paper, a numerical code that can predict primary drying in a vial is developed based on the finite volume method with a moving grid system. The calculation program can handle the axis- symmetric and multi-dimensional characteristics of heat and mass transfer of the vial freeze drying process. To demonstrated the usefulness of the present analysis, a practical freeze drying of skim Milk solution in a vial is simulated and various calculation results are presented.

  • PDF

Reuse of Exhaust Heat and Improvement in Fuel Efficiency of Grain Dryer (곡물(穀物) 건조기(乾燥機)의 배기열(排気熱) 재이용(再利用) 및 열효율(熱効率) 개선(改善)에 관(關)한 연구(硏究))

  • Keum, Dong Hyuk;Lee, Yong Kook;Lee, Kyou Seung;Han, Jong Ho
    • Journal of Biosystems Engineering
    • /
    • v.9 no.2
    • /
    • pp.65-73
    • /
    • 1984
  • While most of researches on the performance of high temperature grain dryer have dealt mainly with improving dryer capacity and drying speed during the last twenty years, energy efficiency, in fact, has not been emphasized. Current fuel supplies and energy cost have shifted the emphasis to reducing the energy consumption for grain drying while maintaining dryer capacity and grain quality. Since the energy input for drying is relatively large, the recovery and reuse of at least part of the exhaust energy can significantly reduce the total energy consumption in existing drying systems. Unilization of exhaust heat in grain dryer either through direct recycling or by a thermal coupling in heat exchanger have been subject of a number of investigators. However, very seldom research in Korea has been done in this area. Three drying tests(non-recycling, 0.22 recycle ratio, and 0.76 recycle ratio)were performed to investigate the thermal efficiency and heat loss factors of continuous flow type dryer, and to analyze the effect of recycle ratio (weight of exhaust air recycled/total weight of input air) on the energy requriements for rough rice drying. The test results showed that when the exhaust air was not recycled, the energy lost from furnace was 15.3 percent of input fuel energy, and latent and sensible heat of exhaust air were 61.4 percent and 11.2 percent respectively. The heat which was required in raising grain temperature and stored in dryer was relatively small. As the recycle ratio of exhaust air was increased, the drying rate was suddenly decreased, and thermal efficiency of the kerosene burner was also decreased. Drying test with 0.76 recycle ratio resulted in 12.4% increase in fuel consumption, and 38.4% increase in electric power consumption as compared to the non-recycled drying test. Drying test of 0.22 recycle ratio resulted in 6.8% saving in total energy consumption, 8.0% reduction in fuel consumption, and 2.5% increase in electric power consumption as compared to the non-recycled drying test.

  • PDF

Distribution Model Based on Computer Simulation for Internal Temperature and Moisture Content in Press Drying of Tree Disks (원판(圓板)의 열판건조(熱板乾燥)에서 컴퓨터 시뮬레이션에 의한 내부온도(內部溫度)와 함수율(含水率) 분포모형(分布模型))

  • Yeo, Hwan-Myeong;Jung, Hee-Suk
    • Journal of the Korean Wood Science and Technology
    • /
    • v.22 no.2
    • /
    • pp.61-70
    • /
    • 1994
  • This study was executed to find the applicability of press drying of tree disk by investigating the shrinkage and drying defect and to form appropriate model by comparing the actual moisture content(MC) and internal temperature in respect of drying time with calculated values based computer simulation to which was applied finite difference method. In press drying disk, heating period, constant drying rate period maintained plateau temperature at 100$^{\circ}C$ and falling drying rate period were significantly distinguished. Actual MC and internal temperature were analogous to those calculated at comparing points. Heat transfer model formed by Fourier's law using specific heat of moist wood and conduction coefficient considering fractional volume of each element of wood cell wall, bound water, free water and air showed applicability as basic data to developing heat expansion, shrinkage and drying stress during press drying. Also mass transfer model formed by Fick's diffusion law using water vapor diffusion coefficient showed applicability. Longitudinal shrinkage was developed by pressure of hot press and tangential shrinkage was restrained by hygrothermal recovery. The heart check, surface check and ring failure were occurred differently in species, but V-shaped crack didn't develop.

  • PDF

The Comparative Analysis of Drying-Conditions, -Rates, -Defects and Yield, and Heat-Efficiency in Solar-Dehumidification-Drying of Oaks With Those in Conventional Air-, Semi-Greenhouse Type solar-, and Kiln- Drying (참나무류(類)의 제습태양열건조(除濕太陽熱乾燥)의 조건(條件), 속도(速度), 결함(缺陷), 수율(收率) 및 열효율(熱效率)과 관행(慣行) 천연(天然), 반온실형(半溫室型) 태양열(太陽熱) 및 열기건조(熱氣乾燥)와의 비교(比較)·분석(分析))

  • Lee, Hyoung-Woo;Jung, Hee-Suk
    • Journal of the Korean Wood Science and Technology
    • /
    • v.17 no.1
    • /
    • pp.22-54
    • /
    • 1989
  • Seasonal semi-greenhouse type solar-drying of 2.5cm-and 5.0cm-thick lumber of Quercus aliena Blume and Quercus variailis Blume was carried out to investigate the possibility of solar-drying of wood and to decide the active solar-drying period in Korea. In the active solar-drying period obtained solar-dehumidification, semi-greenhouse type solar-, air- and kiln-drying of 2.5cm -thick lumber of oaks were carried out to analyze drying-rates. -defects, and -yield in each drying-method and to calculate daily total absorbed solar-radiation the solar dryers. The energy balance equations were set up, considering all the energy requirements, to analyze the heat efficiencies of semi-greenhouse type solar and solar-dehumidification-dryer. In a seasonal drying the drying rate of semi-greenhouse type solar-dryer was highest in summer, and greater in fall, spring, and winter in order. Solar-drying time was 45% in summer to 50% in winter of the air-drying rime, and more serious drying-defects occurred in air-drying than in solar-drying. In the active solar-drying period. April, May, and June, the average drying rate in solar-dehumidification-drying was 1.0%/day and greater than 0.8%/day in semi-greenhouse type solar-drying. In solar-dehumidification-drying the time required to dry lumber to 10% moisture content was less than 60 days, and solar-dehumidification-drying showed the highest drying-yield, 65.01%, than the other drying methods. The daily total absorbed solar radiations were 8.51MJ on the roof collector and 6.22 MJ on the south wall collector. In the energy blance 69.48% of total energy input was lost by heat conduction through walls, roof. and floor 11.68% by heat leakage, 0.33% by heating the internal structures of the solar-dryer and 5.38% by air-venting. Therefore the heat efficiency of semi-greenhouse type solar-dryer 13.13%, was lower than that of solar-dehumidification-dryer, 14.04%. Solar-drying of lumber in Korea showed the possibility to reduce the air-drying-time in every season and the efficiency of solar-dehumidification drying was higher than that of semi-greenhouse type solar-drying.

  • PDF