• Title/Summary/Keyword: Heat-Pipe

Search Result 1,178, Processing Time 0.025 seconds

Heat transfer enhancement of nanofluids in a pulsating heat pipe for heat dissipation of LED lighting

  • Kim, Hyoung-Tak;Bang, Kwang-Hyun
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.38 no.10
    • /
    • pp.1200-1205
    • /
    • 2014
  • The effect of nanofluids on the heat transfer performance of a pulsating heat pipe has been experimentally investigated. Water-based diamond nanofluid and aluminium oxide ($Al_2O_3$) nanofluid were tested in the concentration range of 0.5-5%. The pulsating heat pipe was constructed using clear Pyrex tubes of 1.85 mm in inner diameter in order to visualize the pulsating action. The total number of turns was eight each for heated and cooled parts. The supply temperatures of heating water and cooling water were fixed at $80^{\circ}C$ and $25^{\circ}C$ respectively. The liquid charging ratio of the nanofluid was 50-70%. The test results showed that the case of 5% concentration of diamond nanofluid showed 18% increase in heat transfer rate compared to pure water. The case of 0.5% concentration of $Al_2O_3$ nanofluid showed 24% increase in heat transfer rate compared to pure water. But the increase of $Al_2O_3$ nanofluid concentration up to 3% did not show further enhancement in heat transfer. It is also observed that the deposited nanoparticles on the tube wall played a major role in enhanced evaporation of working fluid and this could be the reason for the enhancement of heat transfer by a nanofluid, not the enhanced thermal conductivity of the nanofluid.

Design of Closed Loop Pipe Cooling System (냉각수 순환 형태의 파이프 쿨링 공법의 설계)

  • 박찬규;왕인수;구자중
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2001.11a
    • /
    • pp.52-57
    • /
    • 2001
  • In order to control hydration heat in mass concrete, pipe cooling method has been widely used. The pipe cooling method leads to the decrease of curing period by lagging materials as well as the decrease of temperature difference between center and surface of mass concrete member, There are two methods in the pipe cooling system, which are open loop system and closed loop system. However open loop pipe cooling system cannot be applied to the mass concrete structures when cooling water supply is difficult. To control hydration heat of high strength mass foundation in the central area of city, closed loop pipe cooling system was developed to solve the cooling water supply. This paper reports the performance results of hydration heat control with closed loop pipe cooling system.

  • PDF

A Study on Cooling Performance of Heat Sink using Pulsating Heat Pip (PHP를 이용한 히트싱크의 냉각 성능에 관한 연구)

  • Choi, Woo-Seok;Kim, Jong-Soo
    • Proceedings of the KSME Conference
    • /
    • 2007.05b
    • /
    • pp.2438-2443
    • /
    • 2007
  • In order to guarantee the performance of electronic products. It is needed to improve the cooling performance of heat sink. So this paper has been made to investigate the cooling performance for the aluminum heat sink using pulsating heat pipe(PHP). The pulsating heat pipe was used as a heat spreader. Working fluid was R-22. Heater (50 mm ${\times}$ 50 mm ${\times}$ 3mm) was attached to heat sink and it generated 30W, 60W, 80W, 100W. Heat sink was tested for forced convection with 1${\sim}$4m/s of inlet air velocity. And both type heat sinks were carried out by using CFD simulation. This study showed that pulsating heat pipe can be a good tool to improve cooling performance of heat sink.

  • PDF

Modeling of Turbulent Heat Transfer in an Axially Rotating Pipe Flow (축을 중심으로 회전하는 관유동에서 난류열전달의 모형화)

  • Shin, Jong-Keun
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.31 no.9
    • /
    • pp.741-753
    • /
    • 2007
  • The elliptic conceptual second moment model for turbulent heat fluxes, which was proposed on the basis of elliptic-relaxation equation, was applied to calculate the turbulent heat transfer in an axially rotating pipe flow. The model was closely linked to the elliptic blending model which was used for the prediction of Reynolds stress. The effects of rotation on the turbulent characteristics including the mean velocity, the Reynolds stress tensor, the mean temperature and the turbulent heat flux vector were examined by the model. The numerical results by the present model were directly compared to the DNS as well as the experimental results to assess the performance of the model predictions and showed that the behaviors of the turbulent heat transfer in the axially rotating pipe flow were satisfactorily captured by the present models.

An Experimental Study on Heat Transfer in the Pulsating Pipe Flow (원관내 맥동유동의 열전달에 관한 실험적 연구)

  • Kim, Hi Yong;Kim, Chang Kee
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.3 no.1
    • /
    • pp.78-85
    • /
    • 1991
  • An experimental result for heat transfer of pulsating turbulent pipe flow was presented under the condition of fully developed dynamic regime and uniform wall heat flux. Experiments were performed at following conditions ; Inlet time-averaged Reynolds number varied from 5000 to 11000; The peak pressure fluctuation were 1.3, 2.3 and 3.5 percent of the mean pressure; Pulsating frequency ranged from 53 Hz to 320 Hz The measurements showed that the effect of pulsation on local heat transfer is greater at downstream, in which pulsating source exists, than upstream and the heat transfer rate, averaged over the pipe length, was higher or lower than in an equivalent non-pulsating flow according to the pulsating conditions. In addition, the significant change of heat transfer rate was observed in acoustically resonant conditions, when the pulsating frequency of the flow corresponded to the pipe natural frequency.

  • PDF

The Study on Pressure Oscillation and Heat Transfer Characteristics of Oscillating Capillary Tube Heat Pipe

  • Kim, Jong-Soo;Bui, Ngoc-Hung;Jung, Hyun-Seok;Lee, Wook-Hyun
    • Journal of Mechanical Science and Technology
    • /
    • v.17 no.10
    • /
    • pp.1533-1542
    • /
    • 2003
  • In the present study, the characteristics of pressure oscillation and heat transfer performance in an oscillating capillary tube heat pipe were experimentally investigated with respect to the heat flux, the charging ratio of working fluid, and the inclination angle to the horizontal orientation. The experimental results showed that the frequency of pressure oscillation was between 0.1 Hz and 1.5 Hz at the charging ratio of 40 vol.%. The saturation pressure of working fluid in the oscillating capillary tube heat pipe increased as the heat flux was increased. Also, as the charging ratio of working fluid was increased, the amplitude of pressure oscillation increased. When the pressure waves were symmetric sinusoidal waves at the charging ratios of 40 vol.% and 60 vol.%, the heat transfer performance was improved. At the charging ratios of 20 vol.% and 80 vol.%, the waveforms of pressure oscillation were more complicated, and the heat transfer performance reduced. At the charging ratio of 40. vol.%, the heat transfer performance of the OCHP was at the best when the inclination angle was 90$^{\circ}$ the pressure wave was a sinusoidal waveform, the pressure difference was at the least, the oscillation amplitude was at the least, and the frequency of pressure oscillation was the highest.

Numerical Analysis on Heat Transfer Characteristics of a Heat Pipe Type Solar Thermal Receiver According to Internal Geometry Variation (고온 히트파이프식 태양열 흡수기의 내부형상 변화에 따른 열전달 특성의 수치해석)

  • Park, Young-Hark;Boo, Joon-Hong;Kang, Yong-Heack
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2008.05a
    • /
    • pp.165-168
    • /
    • 2008
  • A numerical analysis was conducted to predict the heat transfer characteristics of a solar receiver which is subject to very high heat fluxes and temperatures for solar thermal applications. The concentration ratio of the solar receiver ranges 1000 and the concentrated heat is required to be transported to a certain distance for specific applications. This study deals with a solar receiver according to internal geometry variation incorporating high-temperature heat pipe. The isothermal characteristics in the receiver section is of major concern. The diameter of the solar thermal receiver was 120 mm and the length was 400 mm and the angle of receiver end wall set $90^{\circ},\;60^{\circ},\;45^{\circ},\;30^{\circ}$. And the diameter of the heat pipe was 12.7 mm, 48 axial channels of the same dimensions were attached to the outer wall of the receiver with even spacing in the circumferential direction. The channels are changed to high-temperature sodium heat pipes. Commercial softwares were employed to deal with the radiative heat transfer inside the receiver cavity and the convection heat transfer along the channels. The numerical results are compared and analyzed from the view point of high-temperature solar receiver.

  • PDF

Influence of NCG Charged Mass on the Thermal Performance of VCHP with Screen Mesh Wick (스크린메쉬형 VCHP에서 NCG량에 따른 열전달 성능실험)

  • Park, Young-Sik;Chung, Kyung-Taek;Suh, Jeong-Se
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.20 no.10
    • /
    • pp.689-695
    • /
    • 2008
  • Experimental study has been performed to investigate the influence of non-condensible gas(NCG) charged mass on the thermal performance of a variable conductance heat pipe(VCHP) with screen mesh wick. The VCHP is furnished by screen mesh number 200 for the pipe outer diameter of 12.7mm and the pipe length of 500 mm. The VCHP is filled with water as working fluid of 4.8g and nitrogen as NCG and has evaporator, condenser and adiabatic section, respectively. For the results from experiment, it is found that, for the same charged mass of working fluid, the overall wall temperatures of heat pipe grows up with increasing NCG charged mass. The variation of operating temperature of VCHP reduces with increasing NCG mass. In addition, the profile of axial wall temperature distribution is presented for heat transport capacity of heat pipe, the temperature of cooling water of condenser, inclination angle, and operating temperature.

Experimental Investigation on Heat Transfer Characteristics in a Uniformly Heated Pipe with Pulsating Pressure (맥동 압력을 받는 가열관 내부에서의 열전달 특성에 관한 실험적 연구)

  • 이건태;강병하;이재헌;이춘식
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.16 no.9
    • /
    • pp.1760-1769
    • /
    • 1992
  • An experimental study of thermal transport from a uniformly heated pipe to a pulsating flow has been carried out. Surface of the pipe is imposed with constant heat flux providing by electric heating band. This problem is of particular interest in the design of Stirling engine heat exchangers and in understanding the blood flow in the aorta. Temporal Variatiens of temperature and pressure inside the circular pipe are measured. The dependence of temperature distributions and heat transfer rate on the mean flow rate in the pipe and on the pulsating frequency is investigated in detail. The experimental results indicate that the measured temporal variations of temperature and pressure become nearly sinusoidal The amplitude of temperature variation near the pipe wall is much more substantial than that in core of the pipe. It is also found that the heat transfer rate is increased significantly as the frequency of the pulsating pressure is increased or the mean flow rate in a pipe is increased. The results obtained are also compared with those for non-pulsating flow circumstance.

Analysis of the experimental cooling performance of a high-power light-emitting diode package with a modified crevice-type vapor chamber heat pipe

  • Kim, Jong-Soo;Bae, Jae-Young;Kim, Eun-Pil
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.39 no.8
    • /
    • pp.801-806
    • /
    • 2015
  • The experimental analysis of a crevice-type vapor chamber heat pipe (CVCHP) is investigated. The heat source of the CVCHP is a high-power light-emitting diode (LED). The CVCHP, which exhibits a bubble pumping effect, is used for heat dissipation in a high-heat-flux system. The working fluid is R-141b, and its charging ratio was set at 60 vol.% of the vapor chamber in a heat pipe. The total thermal conductivity of the falling-liquid-film-type model, which was a modified model, was 24% larger than that of the conventional model in the LED package. Flow visualization results indicated that bubbles grew larger as they combined. These combined bubbles pushed the working fluid to the top, partially wetting the heat-transfer area. The thermal resistance between the vapor chamber and tube in the modified design decreased by approximately 32%. The overall results demonstrated the better heat dissipation upon cooling of the high-power LED package.