• Title/Summary/Keyword: Heat-Pipe

Search Result 1,180, Processing Time 0.029 seconds

Failure Analysis of Welded type 304 in Cooling Water Pipeline of District Heating System (지역난방 냉각수 배관의 용접부 파손 분석)

  • Jeong, Joon-Cheol;Kim, Woo-Cheol;Kim, Kyung Min;Sohn, Hong-Kyun;Kim, Jung-Gu;Lee, Soo-Yeol;Kim, Heesan
    • Corrosion Science and Technology
    • /
    • v.19 no.6
    • /
    • pp.296-301
    • /
    • 2020
  • Failure analysis on the welded type 304 pipe used for cooling water piping in the district heating primary side was conducted. Inorganic elements and bacteria in the cooling water and in corrosion products were analyzed, and the weldment was inspected by microscopy and a sensitization test. Corrosion damages were observed in the heat-affected zone, on weld defects such as incomplete fusion or excessive penetration caused by improper welding, or/and at the 6 o'clock position along the pipe axial direction. However, the level of concentration of chloride in the cooling water as low as 80 ppm has been reported to be not enough for even a sensitized type 304 steel, meaning that the additional corrosive factor was required for these corrosion damages. The factor leading to these corrosion damages was drawn to be the metabolisms of the types of bacteria, which is proved by the detection of proton, sulfur containing species, biofilms, and both bacteria and corrosion product analyses.

Study on Validity of Pre-cooling System for Hydrogen Gas Using Cryocooler Part II: CFD Simulation (극저온 냉동기를 활용한 기체 수소 예냉 시스템 검증에 관한 연구 Part II: CFD 시뮬레이션)

  • YOUNG MIN SEO;HYUN WOO NOH;DONG WOO HA;TAE HYUNG KOO;ROCK KIL KO
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.34 no.5
    • /
    • pp.439-446
    • /
    • 2023
  • In this study, the computational fluid dynamics (CFD) simulations were conducted to verify the cooling capacity of the cryocooler used for pre-cooling of hydrogen gas. Based on the experimental results, the effect of the flow rate on a copper pipe attached to the bottom of the cryocooler was investigated. In this study, the temperature data was calculated through the change of boundary condition for heat flux in the copper pipe. In addition, the cooling capacity of the cryocooler for pre-cooling hydrogen gas was considered by calculating the cooling temperature according to the flow rate in the certified operating range. Consequently the pre-cooing system for hydrogen gas was validated with a reasonable accuracy through CFD simulations.

Modeling of thermal fluidized desorption for diesel-oil contaminated soils (Diesel-oil에 오염된 토양의 유동상 열탈착 모델링)

  • 이상화;김병욱;이상득;박달근;이중기
    • Journal of Korea Soil Environment Society
    • /
    • v.4 no.2
    • /
    • pp.137-147
    • /
    • 1999
  • Fluidized-bed thermal desorber coupled with a heat pipe was investigated for the remediation of soil contaminated with diesel oils. Thermal gravimetric analysis by Cahn-balance indicated that the desorption of diesel oils from the soil particles was mainly governed by the internal diffusion at low concentration of less than 0.5 wt. % of oils in the soil particles. In fluidized-bed experiments. increase of fluidizing gas velocity reduced the residual oils of the contaminated soils, the increase of soil feed rate decreased efficiency of fluidized-bed desorber. A mathematical model was developed by incorporating Fickian diffusion kinetics into the Kunii-Levenspiel model Simulation results showed reasonable agreement for the performance of fluidized-bed thermal desorber.

  • PDF

Analysis of a Continuous and Instantaneous Vacuum Drying System for Drying and Separation of Suspended Paricles in Waste Solvent (폐용제에 함유된 입자의 건조 및 분리용 연속식 순간 진공건조시스템 해석)

  • 구재현;이재근
    • Resources Recycling
    • /
    • v.9 no.4
    • /
    • pp.28-36
    • /
    • 2000
  • This study describes to analyze the characteristics for separation and recovery of both the dried particles and the purified solvent from the waste solvent through the vaporization process by the continuous and instantaneous vacuum drying system. The vacuum drying system for the waste solvents recovery consists of a feeding pump, a double pipe heat exchanger, a vacuum spray chamber, and a condenser. The vacuum drying system heats the waste solvent to the vapor in the double pipe heat exchanger and the expanded vapor is sprayed at the end of the tube. The vaporized solvent in the condenser are recovered. The particles in the waste solvent are separated and dried from the vapor in the vacuum spray chamber. Performance evaluation of the vacuum drying system was conducted using the mixture of the dried pigment particles and benzene or alkylbenzene as test samples. For the mixture of 10 wt% pigment particles an 90% benzene, the recovery efficiency of benzene was 88% with the purity of 99% and the recovery efficiency of dried particles was 94% with the moisture of 1.1 wt%. The size of pigment particles was decreased from $6.5\mu\textrm{m}$ to $5.6\mu\textrm{m}$ in diameter due to high speed spraying and dispersion in the vacuum drying system during drying process. Therefore, the vacuum drying system showed to be an effective method for separating particles and solvent in the waste solvent.

  • PDF

A Study on the Improvement of Welding Method for Ice Evaporator (얼음증발기 용접방법 개선에 관한 연구)

  • Lee, Jeong-Youn;Yoo, Heung-Ryol;Son, Yung-Deug
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.22 no.2
    • /
    • pp.558-564
    • /
    • 2021
  • The water purifier market has increased rapidly in recent years. The welding technology of the evaporator is a key component that determines the level of ice production and the cold water performance of an ice purifier. The finger type evaporator of an ice purifier can remove ice and is divided largely into an instant heat method and a hot gas method. In the hot gas type evaporator, particularly during the production process, the pinhole phenomenon inside the copper pipe and clogging problems occur intermittently when welding high-pressure pipes due to the high-temperature oxygen welding. Its use in a water purifier can cause a problem in that ice and cold water do not form, and repairs cannot be made on site. To solve this problem, in this study, a cap jig was applied to improve the welding defect of the hot gas evaporator. In addition, the oxygen welding flame size was adjusted so that the heat source could be well supplied to the cap jig, and the effectiveness was confirmed through a wave pressure test, a test, and a thermal shock test.

Recent Progress in Air Conditioning and Refrigeration Research : A Review of Papers Published in the Korean Journal of Air-Conditioning and Refrigeration Engineering in 2007 (설비공학 분야의 최근 연구 동향 : 2007년 학회지 논문에 대한 종합적 고찰)

  • Han, Hwa-Taik;Shin, Dong-Sin;Choi, Chang-Ho;Lee, Dae-Young;Kim, Seo-Young;Kwon, Yong-Il
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.20 no.12
    • /
    • pp.844-861
    • /
    • 2008
  • The papers published in the Korean Journal of Air-Conditioning and Refrigeration Engineering during the year of 2007 have been reviewed. Focus has been put on current status of research in the aspect of heating, cooling, ventilation, sanitation and building environments. The conclusions are as follows. (1) The research trends of fluid engineering have been surveyed as groups of general fluid flow, fluid machinery and piping, etc. New research topics include micro nano fluid, micropump and fuel cell. Traditional CFD was still popular and widely used in research and development. Studies about fans and pumps were performed in the field of fluid machinery. Characteristics of flow and fin shape optimization are studied in the field of piping system. (2) The research works on heat transfer have been reviewed in the field of heat transfer characteristics, heat exchangers, and desiccant cooling systems. The research on heat transfer characteristics includes thermal transport in pulse tubes, high temperature superconductors, ground heat exchangers, fuel cell stacks and ice slurry systems. For the heat 'exchangers, the research on pin-tube heat exchanger, plate heat exchanger, condensers and gas coolers has been cordially implemented. The research works on heat transfer augmenting tubes have been also reported. For the desiccant cooling systems, the studies on the design and operating conditions for desiccant rotors as well as performance index are noticeable. (3) In the field of refrigeration, many papers were presented on the air conditioning system using CO2 as a refrigerant. The issues on the two-stage compression, the oil selection, and the appropriate oil charge were treated. The subjects of alternative refrigerants were also studied steadily. Hydrocarbons, DME and their mixtures were considered and various heat transfer correlations were proposed. (4) Research papers have been reviewed in the field of building facilities by grouping into the researches on heat and cold sources, air conditioning and air cleaning, ventilation and fire research including tunnel ventilation, flow control of piping system, and sound research with drain system. Main focuses have been addressed to the promotion of efficient or effective use of energy, which helps to save energy and results in reduced environmental pollution and operating cost. (5) Studies were mostly focused on analyzing the indoor environment in various spaces like cars, old tombs, machine rooms, and etc. in an architectural environmental field. Moreover, subjects of various fields such as the evaluation of noise, thermal environment, indoor air quality and development of energy analysis program were researched by various methods of survey, simulation, and field experiment.

Experiments on Natural Convection on the Outer Surface of a Vertical Pipe by Using Fluids with High Pr Number (높은 Pr 수의 유체를 사용한 수직 원형관 외부의 자연대류 실험)

  • Kang, Gyeong-Uk;Chung, Bum-Jin
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.35 no.1
    • /
    • pp.33-42
    • /
    • 2011
  • In this study, we investigated the natural convection on the outer surface of a vertical pipe by performing mass transfer experiments using fluids with high Pr number using the concept of analogy between heat and mass transfer. A cupric acid-copper sulfate electroplating system was adopted as the mass transfer system. Tests were performed for $Ra_H$ numbers from $1.4{\times}10^9$ to $4{\times}10^{13}$, Pr numbers from 2,094 to 4,173, and diameters from 0.005 m to 0.035 m. The test results for laminar flow conditions were in good agreement with the correlations reported by King, Jakob and Linke, McAdam, and Bottemanne, and those for turbulent conditions with the correlations presented by Fouad for a vertical plate and also proved the dependence on Pr numbers. The obtained correlations were $Nu_H=0.55Ra^{0.25}_H$ for laminar and $Nu_H=0.12Ra^{0.28}_HPr^{0.1}$ for turbulent. The transition between laminar and turbulent occurs at $Ra_H$ of about $10^{12}$.

Experimental Research on the Effect of the Number of Layers by Overlay Welding of Monel-Clad Pipe on Weldability (모넬(Monel)-Clad 파이프의 오버레이 용접 적층수가 용접성에 미치는 영향에 관한 실험적 연구)

  • Choi, Hyeok;Park, Joon-Hong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.11
    • /
    • pp.42-50
    • /
    • 2016
  • Overlay welding affects the chemical components and weld hardness by dilution of the lamination layer thickness, which determines the surface properties. This study experimentally investigates different numbers of layers for overlay welding monel materials, which are anti-corrosion materials. The Fe content, weldability of the base metal and monel materials, hardness, and surface flatness were examined. Each evaluation was carried out after overlay welding with three layers on the base material and pipe base material of the plate. The Fe content was evaluated by analyzing the constituents of each layer. The Fe content was satisfactory in the three layers. The weldability of the laminate specimens was evaluated by a bending test. The hardness and bead flatness of the laminate specimens were evaluated by micro Vickers and 3D measurements. The hardness was highest in the heat-affected zone with one layer, and it decreased with increasing lamination. In the case of bead flatness, there is a sharp difference in the deviation with increasing numbers of laminations, which should be considered carefully.

Prediction of the Minimum Required Pressure of Soundless Chemical Demolition Agents for Plain Concrete Demolition (무근콘크리트 해체시 무소음화학팽창제의 최소요구팽창압 예측)

  • Kim, Kyeongjin;Cho, Hwangki;Sohn, Dongwoo;Koo, Jaehyun;Lee, Jaeha
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.31 no.5
    • /
    • pp.251-258
    • /
    • 2018
  • In construction site, conventional methods such as jackhammer or explosive methods(dynamite) have been often used for the demolition of structures. Use of those methods are more carefully treated in environmentally and historically sensitive area. For those reasons, use of Soundless Chemical Demolition Agent(SCDA) is getting the spotlight. The SCDA is a powder which has expansive strength when it is mixed with water. In these Characteristics, SCDA can destroy the concrete or rock as it is poured into boreholes of the concrete or rock structures. However, there is no industrial standard for the use of SCDA effectively yet. In this study, experimental study to measure the expansive pressure was conducted depending on various boundary conditions such as waterproof, length of the steel pipe, submerged of steel pipe. Furthermore, computational analysis using damage plasticity model to predict the minimum required pressure of the SCDA for the concrete demolition depending on spacing between holes(k-factor) and compressive strength of the concrete was conducted. Obtained results indicates that water heat dissipation with submerged steel pipe shows the stable pressure for measuring the SCDA and hole distance(k-factor) is the most important factor for crack initiation of concrete.

An Experimental Study on Thermal Conductivity of Controlled Low Strength Materials with Coal Ash (석탄회를 활용한 CLSM의 열전도도에 관한 실험적 연구)

  • Lee, Seung Jun;Lee, Jong Hwi;Cho, Hyun Soo;Chun, Byung Sik
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.32 no.3C
    • /
    • pp.95-104
    • /
    • 2012
  • Due to current interest in creation of urban space and urban landscape, more emphasis has been placed on underground space development. With increasing number of underground power cables and its importance, a study of backfill materials for pipe is now imperative. Backfill materials require outstanding thermal characteristics since breakdown of cable insulation can be caused if heat generated from transmission of underground power cables had not been effectively discharged through backfill materials. Also, coal ash, which are industrial by-products, is being produced in high volume every year. Among them, ponded ash (PA) is not recycled and instead, mostly buried. Therefore in this study, thermal conductivity test based on mixture ratio (PA, ponded ash : FA, fly ash) was performed to evaluate the thermal conductivity characteristics of CLSM (controlled low strength materials) with coal ash. The results indicate that the mixture ratio (PA, ponded ash : FA, fly ash) of 80:20, water contents of 28~30%, and cement contents of 7-11% showed the highest conductivity at 0.796~0.884W/mK and thus, considered optimal in terms of recycling ponded ash (PA) as well as for maximizing utilization as backfill materials for pipe in underground.