• Title/Summary/Keyword: Heat transfer model

Search Result 1,857, Processing Time 0.031 seconds

Numerical Analysis on the Heat Transfer Characteristics of Multiple Slot Jets at the Surface of Protruding Heated Blocks (충돌제트의 간격변화에 따른 발열블록 표면에서의 열전달 특성에 관한 수치해석)

  • 박시우;정인기
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.27 no.2
    • /
    • pp.229-237
    • /
    • 2003
  • The flow and heat transfer characteristics at the surface of two-dimensional protruding heated blocks using confined impingement multiple slot jets were computationally investigated Numerical predictions were made for round-edged nozzles at several nozzle-to-target plate spacings and jet-to-jet distances, with turbulent jet Reynolds numbers ranging from 2000 to 7800. The commercial finite-volume code FLUENT was used to solve the heat transfer characteristics and flow fields using a RNG $\textsc{k}-\varepsilon$ model. The computed heat transfer characteristics at the surface of heated blocks were in good qualitative agreement with previous experimental data The results of heat transfer characteristics on the surface of protruding heated blocks are important considerations in electronics Packaging design.

HEAT-TRANSFER ANALYSIS OF A COOLING CHANNEL WITH INCLINED ELLIPTICAL DIMPLES (기울어진 타원형 딤플이 부착된 냉각 유로에 대한 열전달 성능해석)

  • Kim, H.M.;Moon, M.A.;Kim, K.Y.
    • Journal of computational fluids engineering
    • /
    • v.17 no.1
    • /
    • pp.1-7
    • /
    • 2012
  • This paper deals with a parametric study on inclined elliptical dimples to enhance heat transfer in a channel. Three-dimensional Reynolds-averaged Naiver-Stokes equations are solved to estimate flow and heat transfer in dimpled channel. As turbulence closure, the low-Re shear stress transport model is employed. Two non-dimensional geometric variables, dimple ellipse diameter ratio and angle of main diameter to flow direction are selected for the parametric study. The inclined elliptical dimples show higher heat-transfer performance but with higher pressure drop compared to the circular dimples. And there is an optimum inclination angle that gives the maximum heat transfer.

Three Dimensional Heat Transfer Analysis of a Thermally Stratified Pipe Flow (열성층 배관 유동에 대한 3차원 열전달 해석)

  • Jo Jong Chull;Kim Byung Soon
    • Proceedings of the KSME Conference
    • /
    • 2002.08a
    • /
    • pp.103-106
    • /
    • 2002
  • This paper presents an effective numerical method for analyzing three-dimensional unsteady conjugate heat transfer problems of a curved pipe subjected to infernally thermal stratification. In the present numerical analyses, the thermally stratified flows in the pipe are simulated using the standard $k-{\varepsilon}$turbulent model and the unsteady conjugate heat transfer is treated numerically with a simple and convenient numerical technique. The unsteady conjugate heat transfer analysis method is implemented in a finite volume thermal-hydraulic computer code based on a non-staggered grid arrangement, SIMPLEC algorithm and higher-order bounded convection scheme. Numerical calculations have been performed far the two cases of thermally stratified pipe flows where the surging directions are opposite each other i.e. In-surge and out-surge. The results show that the present numerical analysis method is effective to solve the unsteady flow and conjugate heat transfer in a curved pipe subjected to infernally thermal stratification.

  • PDF

A Study of the Evaporation Heat Transfer in Advanced Reactor Containment

  • Y. M. Kang;Park, G. C.
    • Nuclear Engineering and Technology
    • /
    • v.29 no.4
    • /
    • pp.291-298
    • /
    • 1997
  • In advanced nuclear reactors, the passive containment cooling has been suggested to enhance the safety. The passive cooling has two mechanisms, air natural convection and oater cooling with evaporation. To confirm the coolability of PCCS, many works have been performed experimentally and numerically. In this study, the water cooling test was performed to obtain the evaporative heat transfer coefficients in a scaled don segment type PCCS facility which have same configuration with AP600 prototype containment. Air-steam mixture temperature and velocity, relative humidity and well heat flux are measured. The local steam mass flow rates through the vertical plate part of the facility are calculated from the measured data to obtain evaporative heat transfer coefficients. The measured evaporative heat transfer coefficients are compared with an analytical model which use a mass transfer coefficients. From the comparison, the predicted coefficients show good agreement with experimental data however, some discrepancies exist when the effect of wave motion is not considered. Finally, a new correlation on evaporative heat transfer coefficients are developed using the experimental values.

  • PDF

Shape Optimization of Heat Transfer Surfaces with Staggered Ribs To Enhance Thrbulent Heat Transfer (난류열전달 향상을 위한 엇갈린 리브가 부착된 열전달면의 형상최적설계)

  • Kim, Hong-Min;Kim, Kwang-Yong
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.27 no.9
    • /
    • pp.1351-1359
    • /
    • 2003
  • This study presents a numerical procedure to optimize shape of streamwise periodic ribs mounted on both of the principal walls to enhance turbulent heat transfer in a rectangular channel flow. The response surface method is used as an optimization technique. The optimization is based on Navier-Stokes analysis of flow and heat transfer with $k-{\varepsilon}$ turbulence model. The width-to-height ratio of a rib, rib height-to-channel height ratio and rib pitch to rib height ratio are chosen as design variables. The object function is defined as a function of heat transfer coefficient and friction drag coefficient with weighting factor. Optimum shapes of the rib have been obtained for the range of 0.02 to 0.1 of weighting factor.

Design Optimization of Pin-Fin Sharp to Enhance Heat Transfer

  • Li, Ping;Kim, Kwang-Yong
    • 유체기계공업학회:학술대회논문집
    • /
    • 2005.12a
    • /
    • pp.185-190
    • /
    • 2005
  • This work presents a numerical procedure to optimize the elliptic-shaped pin fin arrays to enhance turbulent heat transfer. The response surface method is used as an optimization technique with Reynolds-averaged Navier Stokes analysis of flow and heat transfer. Shear stress transport (SST) turbulence model is used as a turbulence closure. Computational results for average heat transfer rate show a reasonable agreement with the experimental data. Four variables including major axis length, minor axis length, pitch and the pin fin length nondimensionalized by duct height are chosen as design variables. The objective function is defined as a linear combination of heat transfer and friction-loss related terms with weighting factor. D-optimal design is used to reduce the data points, and, with only 28 points, reliable response surface is obtained. Optimum shapes of the pin-fin arrays have been obtained in the range from 0.0 to 0.1 of weighting factor.

  • PDF

Numerical Analysis of Molten Aluminum Furnace Considering Natural Convective Heat Transfer (자연대류 열전달을 고려한 Al 용탕 보온로의 수치해석)

  • Park S. S.;Kim B. M.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2004.10a
    • /
    • pp.107-110
    • /
    • 2004
  • Application of aluminum alloy has been increasing for most of industry area because aluminum has a good mechanical properties and castability, especially automotive field for weight reduction. But, Furnace industry is sluggish. The purpose of this study is numerical analysis of aluminum holding furnace for reasonableness estimation when we design for new model of furnace. The numerical simulation involving fluid flow of inside air and heat transfer to fireproof material is presented in order to improve the understanding of aluminum furnace. First of all, we are carried out numerically for the two dimensional inside convection and surface radiation heat transfer in a square enclosure. Subsequently, we are established the analysis method of aluminum furnace considering natural convective heat transfer

  • PDF

Numerical Analysis on Heat Transfer Characteristics and Pressure Drop in Plate Heat Exchanger (판형열교환기의 열전달특성 및 압력강하에 관한 해석적 연구)

  • Kim, K.R.;Kim, I.G.;Yim, C.S.
    • Journal of the Korean Solar Energy Society
    • /
    • v.22 no.2
    • /
    • pp.19-26
    • /
    • 2002
  • This study aims at numerically analyzing on heat transfer the characteristics and pressure drop of plate heat exchanger(PHE) using the Phoenics 3.1 VR Editor for the standard k-$\varepsilon$ model. Computations have been carried out for a range of chevron angle from $30^{\circ}$ to $60^{\circ}$, inlet velocity from 0.03m/s to 0.63m/s and the height of corrugation from 0.0045m to 0.0060m. The results show that both of heat transfer performance and pressure drop increase as chevron angle increases. This is because higher troughs produce higher turbulence and a higher heat transfer coefficient in the liquids flowing between the plates. As inlet velocity from 0.03m/s to 0.63m/s increases, heat transfer performance and pressure drop increase parabolically. As the height of corrugation increases, both of heat transfer performance and pressure drop decrease with the decrease of velocity. And the pressure drop decreases and the friction factor increases as the height of corrugation increases.

Heat transfer characteristics of fin and tube heat exchangers with various interrupted surface for air conditioning application (다양한 형태의 단속표면을 갖는 공조기용 핀-관 열교환기의 열전달 특성)

  • Yun, Jeom-Yeol;Lee, Gwan-Su
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.20 no.12
    • /
    • pp.3938-3948
    • /
    • 1996
  • This study is related with the experimental investigation on the heat transfer and pressure drop characteristics of the fin-and-tube heat exchangers with three different interrupted fins and a plane fin for air-conditioning application. Experiments were conducted accordingly following the appropriate development process. Geometry similitude experiment was introduced to predict the performance of fins, and prototype experiment was also performed to confirm the validity of geometry similitude experimental results. However, these experimental results were limited to the sensible heat transfer characteristics of the heat exchangers. Hence, additional experiment was performed using refrigerant to investigate the latent heat transfer characteristics. This paper presents an appropriate process for the development of a new type heat exchanger. Sensible and latent heat transfer characteristics for each fin configuration is also provided along with the optimal fin configuration.

Impact of Phonon Dispersion on Thermal Conductivity Model (포논 분산이 열전달 모델에 미치는 영향)

  • Chung, Jae-Dong
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.27 no.8
    • /
    • pp.1165-1173
    • /
    • 2003
  • The effects of (1) phonon dispersion on thermal conductivity model and (2) differentiation of group velocity and phase velocity are examined for germanium. The results show drastic change of thermal conductivity regardless of the same relaxation time model. Also the contribution of transverse acoustic (TA) phonon and longitudinal acoustic (LA) phonon on the thermal conductivity at high temperatures is reassessed by considering more rigorous dispersion model. Holland model, which is commonly used for modeling thermal conductivity, underestimates the scattering rate for TA phonon at high frequency. This leads the conclusion that TA is dominant heat transfer mode at high temperatures. But according to the rigorous consideration of phonon dispersion, the reduction of thermal conductivity is much larger than the estimation of Holland model, thus the TA at high frequency is expected to be no more dominant heat transfer mode. Another heat transfer mechanism may exist at high temperatures. Two possible explanations we the roles of (1) Umklapp scattering of LA phonon at high frequency and (2) optical phonon.