• Title/Summary/Keyword: Heat transfer loss

Search Result 473, Processing Time 0.031 seconds

Effects of Thermal Interaction on Natural Convection From Discrete Heat Sources Mounted on a Vertical Plate (수직평판에 부착된 불연속 열원에 의한 자연대류에서 열원간의 열적 상호간섭에 관한 연구)

  • Park, H.S.;Choo, H.L.;Riu, K.J.
    • Solar Energy
    • /
    • v.18 no.4
    • /
    • pp.39-47
    • /
    • 1998
  • The natural convection heat transfer in a vertical plate with discrete heat sources was studied experimentally. The particular interest was the thermal interaction of the heat sources. In this study, the radiative and conductive heat transfer were considered as heat loss, Thus, the net convective heat transfer rate was presented as adiabatic temperature and thermal wake function. As a results, for non-uniform heating condition, heat input ratio(q1/q2) was most dominant parameter for the thermal wake function. The convective heat transfer rate is decreased with the increasing of channel ratio. For the range of $7.50{\times}10^5<Rac<8.66{\times}10^6$, a useful correlation was proposed as a function of channel Rayleigh number.

  • PDF

The operational condition of the refrigeration cycle taking into account of heat transfer processes and heat loss of the cold heat source (熱傳達 및 熱損失을 考慮한 冷凍사이클의 運轉條件)

  • 김수연;정평석;정인기
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.12 no.1
    • /
    • pp.48-52
    • /
    • 1988
  • For the refrigeration system using the reversed Carnot cycle, maximum conditions of effectiveness and available energy output are studied with taking into account of the heat transfer between heat sources and the cycle, and of the heat loss due to heat leakage into the cold heat source. The extremum of the effectiveness exists for variables T$_{l}$ and T$_{L}$. Therefore the desirable results in engineering applications that available energy output is not zero under maximum condition of the effectiveness are obtained. In addition, the extremum of the available energy output does not exist for the variable T$_{l}$ but does for the variable T$_{L}$. As the heat loss increases, the available energy output and the effectiveness decrease, the regions of T$_{l}$ and T$_{L}$ where the refrigeration system is possible to operate become smaller.aller.

A Study on the Comparison of the Combustion Characteristics among an IDI, a HSDI Diesel Engine and a SI Engine using One-zone Heat Release Analysis (단일영역 열발생량 계산법을 사용한 IDI, HSDI 디젤엔진과 SI엔진의 연소특성 비교에 관한 연구)

  • Lee Sukyoung;Jeong Kuseob;Jeon Chunghwan;Chang Yongjune
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.13 no.6
    • /
    • pp.21-30
    • /
    • 2005
  • Heat release analysis is a very importent method in understanding the combustion phenomena inside an engine cylinder. In this study, one-zone heat release analysis was used with the mesured cylinder pressures of an IDI(indirect injection), a HSDI(high speed direct injection) and a SI(spark ignition) engine. It has benefits of simple equation, fast speed, reliability. The object of the study is to compare the combustion characteristics among an IDI, a HSDI and SI engine. Result of analysis, the maximum heat release rate of a HSDI is higher than an IDI because of long ignition delay period. The heat release curve of a IDI is more linear than an HSDI, so the combustion characteristics of a IDI is similiar to that of an SI engine. There is a suggestion here that the combustion efficiency of a HSDI is highest of that of all engines because of the smallest heat transfer loss of all engines.

COMPARISON OF THE DECAY HEAT REMOVAL SYSTEMS IN THE KALIMER-600 AND DSFR

  • Ha, Kwi-Seok;Jeong, Hae-Yong
    • Nuclear Engineering and Technology
    • /
    • v.44 no.5
    • /
    • pp.535-542
    • /
    • 2012
  • A sodium-cooled demonstration fast reactor with the KALIMER-600 as a reference plant is under design by KAERI. The safety grade decay heat removal system (DHRS), which is important to mitigate design basis accidents, was changed in the reactor design. A loss of heat sink and a vessel leak in design basis accidents were simulated using the MARS-LMR system transient analysis code on two plant systems. In the analyses, the DHRS of KALIMER-600 had a weakness due to elevation of the overflow path for the DHRS operation, while it was proved that the DHRS of the demonstration reactor had superior heat transfer characteristics due to the simplified heat transfer mechanism.

A Study on the Heat Loss Reduction of a Refrigerator by Thermal Conductivity Change and Partial Removal of Rubber Magnet (냉장고 가스켓 주위 고무자석 재질 및 형상 변경에 따른 열손실 개선 연구)

  • Ha, Ji Soo;Ahn, Won Sul
    • Journal of Energy Engineering
    • /
    • v.23 no.4
    • /
    • pp.240-246
    • /
    • 2014
  • The present study has been carried out to reduce the heat loss from a refrigerator by changing thermal conductivity and partial removal of rubber magnet near refirgerator gasket. To perform this purpose, two dimensional heat transfer analysis for the horizontal cross sectional plane of a refrigerator has been accomplished. From the present study, it could be seen that the heat loss could be reduced nearly 7% by changing thermal conductivity of rubber magnet from 10W/mK to 1W/mK. The heat loss reduction, 17%, could be achieved by removal of rubber magnet near hotline and the effect on the heat loss reduction by partial removal of rubber magnet might be helpful for the refrigerator power consumption.

An experimental study on the heat transfer characteristics in packed bed (충전층내에서의 열전달특성에 관한 실험적 연구)

  • 신현준;양한주;오수철
    • Journal of the korean Society of Automotive Engineers
    • /
    • v.4 no.3
    • /
    • pp.40-47
    • /
    • 1982
  • Heat transfer on packed bed is considered to be important for the effective designs of chemical reaction equipment, air conditioning system, and storage type heat exchanger, etc. Currently studies are being carried out quite actively in this field in order to increase the heat transfer efficiency. The effect of heat transfer is closely relater to materials, shapes, porosities and packing states of packed bed as well as mutual dimensional relations between particles and the container. Investigation shows that heat transfer results appear to be influenced by such parameters as fluid velocity through packed bed, mass flow, and thermal properties. It is noted that viscosity is also considered to be an important factor in this problem. In this study, effective thermal conductivities on packed bed, effects of thermal conductivity (Ke) and friction factor (Fk) according to change of porosity(.epsilon.) and Reynolds number(Reh(, and pressure loss of the fluid, are experimentally investigated. Results show that the effective thermal conductivity increases and the friction factor decreased, as against the increase of Reynolds number. But as the increase of porosity increase them both.

  • PDF

A Dynamic Characteristic of the Multi-Inverter Heat Pump with Frosting (착상을 수반한 멀티 가변속 열펌프의 동특성)

  • ;;Shigeru Koyama
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.15 no.5
    • /
    • pp.337-345
    • /
    • 2003
  • In the case of heat exchangers operating under frosting condition, the growth of frost layer causes the heat exchanger to increase the thermal resistance and pressure loss of the air flow. In this paper, a transient characteristic prediction model of the heat transfer for multi inverter heat pump with frosting on its surface was presented taking into account the change of the fin efficiency due to the growth of the frost layer. In this dynamic simulation program, which was peformed for a basic air conditioning system model, such as evaporator, condenser, compressor, linear electronic expansion valve (LEV) and bypass circuit. The theoretical model was driven from the obtained heat transfer coefficient and mass transfer coefficient, independently. And we consider heat transfer performance was only affected by a decrease of the wind flow area. The calculated results were compared with some cases of experiments for frosting conditions.

Thermodynamic Modeling of Heat Loss and Quenching in a Down Scaled Combustor (형상 축소된 연소기의 열손실 및 소염해석 모델)

  • Lee, Dae-Hoon;Kwon, Se-Jin
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.26 no.7
    • /
    • pp.919-926
    • /
    • 2002
  • Down scaled combustor undergoes increased heat loss that results in incomplete combustion or quenching of the flame as a consequence. Therefore, effect of enhanced heat loss should be understood to design a MEMS scale combustion devices. Existing combustion models are inadequate for micro combustors because they were developed for analysis of regular scale combustor where heat loss can be ignored during the flame propagation. In this research a combustion model is proposed in order to estimate the heat loss and predict quenching limit of flame in a down scaled combustor. Heat loss in the burned region is expressed in a convective form as a product of wall surface area, heat transfer coefficient and temperature difference. Comparison to the measurements showed satisfactory agreement of the pressure and temperature drop. Quenching is accounted for by introducing a correlation of quenching parameter and heat loss. The present model predicted burnt fraction of gases with reasonable accuracy and proved to be applicable in thermal design of a micro combustor.

Heat Losses from the Receivers of a Multifaceted Parabolic Solar Energy Collecting System

  • Seo, Taebeom;Ryu, Siyoul;Kang, Yongheock
    • Journal of Mechanical Science and Technology
    • /
    • v.17 no.8
    • /
    • pp.1185-1195
    • /
    • 2003
  • Heat losses from the receivers of a dish-type solar energy collecting system at the Korea Institute of Energy Research (KIER) are numerically investigated. It is assumed that a number of flat square mirrors are arranged on the parabolic dish structure to serve as a reflector. Two different types of receivers, which have conical and dome shapes, are considered for the system, and several modes of heat losses from the receivers are thoroughly studied. Using the Stine and McDonald model convective heat loss from a receiver is estimated. The Net Radiation Method is used to calculate the radiation heat transfer rate by emission from the inside surface of the cavity receiver to the environment. The Monte-Carlo Method is used to predict the radiation heat transfer rate from the reflector to the receiver. Tracing the photons generated, the reflection loss from the receivers can be estimated. The radiative heat flux distribution produced by a multifaceted parabolic concentrator on the focal plane is estimated using the cone optics method. Also, the solar radiation spillage around the aperture is calculated. Based on the results of the analysis, the performances of two different receivers with multifaceted parabolic solar energy collectors are evaluated.

Development of an Engineering Model of Hydrogen-Fueled Ultra-micro Combustor for UMGT

  • Shimotori, Shoko;Yuasa, Saburo;Sakurai, Takashi
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2008.03a
    • /
    • pp.828-836
    • /
    • 2008
  • To develop an engineering-model of hydrogen-fueled ultra-micro combustor for Ultra Micro Gas Turbine(UMGT), we reviewed and summarized the problems in downsizing combustors, and determined a suitable burning method. The key issue to actualize practical ultra-micro combustors is reducing heat loss from the combustor to compressor and turbine. The reduction of heat loss was discussed from 3 different viewpoints; heat-insulation material, high-space-heating-rate combustion, and combustor-insolated gas turbine structure. Use of heat-insulation material induced the heat loss reduction to the surroundings. The heat loss ratio decreased substantially in reverse proportion to space heating rate, leading the idea that it could be reduced by burning at a high space heating rate. By settling the combustor insolated from the compressor and turbine, the heat transfer from the combustor to the compressor and turbine becomes smaller. For a selection of the suitable burning method, comparison between 2 burning methods, flat-flame and swirling-flamer types, was conducted. Synthetically the flat-flame burning method was confirmed to be more suitable for ultra-micro combustors than latter one. Base on them, an engineering-model of hydrogen-fueled flat-flame ultra-micro combustor was developed. To obtain high overall heat-insulation, heat-resistant and strength, the engineering-model combustor had triple layer structure with an advanced ceramic, a heat insulation material and a stainless steel. To simplify heat transfer issue in the combustor, it was isolated from the other components. Furthermore it was designed by considering structure, size, material, velocity, pressure loss and prevention of flashback.

  • PDF