• Title/Summary/Keyword: Heat transfer loss

Search Result 477, Processing Time 0.023 seconds

Three-dimensional flow characteristics and heat transfer to a circular cylinder with a hot circular impinging air jet (원형 실린더에 충돌하는 고온 제트의 3차원 유동 특성 및 열전달)

  • Hong, Gi-Hyeok;Gang, Sin-Hyeong
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.21 no.2
    • /
    • pp.285-293
    • /
    • 1997
  • Numerical calculations has been performed for the flow and heat transfer to a circular cylinder from a hot circular impinging air jet. The characteristics of the flow and heat transfer are investigated and compared with the two-dimensional flow. The present study lays emphasis on the investigation on the flow and heat transfer of the three-dimensionality. The effects of the buoyancy force and the size of jet are also studied. The noticeable difference between the three and the two-dimensional cases is that there is axial flow of low temperature into the center-plane of the cylinder from the outside in the recirculation region. Local Nusselt number over the cylinder surface has higher value for the large jet as compared with that of the small jet since the energy loss of hot jet to the ambient air decreases with increase of the jet size. As buoyancy force increases the flow accelerates so that the period of cooling by the ambient air is reduced, which results in higher local Nusselt number over the surface.

Effects of Baffles on Heat Transfer and Friction Factors in a Rectangular Channel (사각채널에 설치된 배플이 열전달과 마찰계수에 미치는 효과)

  • Ahn, Soo-Whan;Kang, Ho-Keun;Bae, Sung-Taek;Song, Min-Ho
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.30 no.6
    • /
    • pp.693-701
    • /
    • 2006
  • The present work investigates the local heat transfer characteristics and the associated frictional loss in a rectangular channel with inclined solid and perforated baffles to obtain the basic design data for gas turbine. Five different geometries of baffles such as 1) solid (without hole), 2) three holes, 3) six holes, 4) nine holes, 5) twelve holes were covered. A combination of two baffles of same overall size is used. The flow Reynolds number is ranged from 28,900 to 70,100. The placement of baffles augments the overall heat transfer greatly by combining both jet impingement and the boundary layer separation. The present results show that the average Nusselt number distribution is strongly dependent on number of holes in the baffle plates, i.e., the average Nusselt number increases with increasing number of holes. The friction factor decreases also with increasing the number of holes. however. its value increases with increasing the Reynolds number.

Multi-Objective Optimization of a Dimpled Channel Using NSGA-II (NSGA-II를 통한 딤플채널의 다중목적함수 최적화)

  • Lee, Ki-Don;Samad, Abdus;Kim, Kwang-Yong
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2008.03b
    • /
    • pp.113-116
    • /
    • 2008
  • This work presents numerical optimization for design of staggered arrays of dimples printed on opposite surfaces of a cooling channel with a fast and elitist Non-Dominated Sorting of Genetic Algorithm (NSGA-II) of multi-objective optimization. As Pareto optimal front produces a set of optimal solutions, the trends of objective functions with design variables are predicted by hybrid multi-objective evolutionary algorithm. The problem is defined by three non-dimensional geometric design variables composed of dimpled channel height, dimple print diameter, dimple spacing and dimple depth to maximize heat transfer rate compromising with pressure drop. Twenty designs generated by Latin hypercube sampling were evaluated by Reynolds-averaged Navier-Stokes solver and the evaluated objectives were used to construct Pareto optimal front through hybrid multi-objective evolutionary algorithm. The optimum designs were grouped by k-mean clustering technique and some of the clustered points were evaluated by flow analysis. With increase in dimple depth, heat transfer rate increases and at the same time pressure drop also increases, while opposite behavior is obtained for the dimple spacing. The heat transfer performance is related to the vertical motion of the flow and the reattachment length in the dimple.

  • PDF

Optimization of a Cooling Channel with Staggered Elliptical Dimples Using Neural Network Techniques (신경회로망기법을 사용한 타원형 딤플유로의 냉각성능 최적화)

  • Kim, Hyun-Min;Moon, Mi-Ae;Kim, Kwang-Yong
    • The KSFM Journal of Fluid Machinery
    • /
    • v.13 no.6
    • /
    • pp.42-50
    • /
    • 2010
  • The present analysis deals with a numerical procedure for optimizing the shape of elliptical dimples in a cooling channel. The three-dimensional Reynolds-averaged Navier-Stokes (RANS) analysis is employed in conjunction with the SST model for predictions of the turbulent flow and the heat transfer. Three non-dimensional geometric design variables, such as the ellipse dimple diameter ratio, ratio of the dimple depth to the average diameter, and ratio of the distance between dimples to the pitch are considered in the optimization. Twenty-one experimental points within design space are selected by Latin Hypercube Sampling. Each objective function values at these points are evaluated by RANS analysis and producing optimal point using surrogate model. The linear combination of heat transfer coefficient and friction loss related terms with a weighting factor is defined as the objective function. The results show that the optimized elliptical dimple shape improves considerably the heat transfer performance than the circular dimple shape.

Prediction of Temperature Rise in Power Appratus (초고압 전력기기의 온도상승 예측)

  • Kim, S.W.;Park, J.H.;Hahn, S.C.;Lee, B.Y.;Park, K.Y.;Song, W.P.;Kim, J.B.
    • Proceedings of the KIEE Conference
    • /
    • 2001.04a
    • /
    • pp.113-115
    • /
    • 2001
  • In order to design the power appratus such ac bus bar, the current carrying ampacity should be determined, Since it is limited by maxium operating temperature, it is very important to predict temperature-rise on it. The main causes to raise temperature are joule's loss in the current carrying conductor and induced circulating and eddy current in the tank. The heat transfer is divided into convection and radiation on boundary, determining convection heat transfer coefficient is not easy. This paper propose a new technique that can be used to estimate the temperature rise in the extra high voltage bus bar. The heat transfer coefficient is analytically calculated by applying Nusselt Number depending on temperature as well as model geometry. The analytic method which use heat transfer coefficient is coupled with finite element method. The temperature distribution in the bus bar by the proposed method shows good agreement with experimental data.

  • PDF

Optimization of a Rotating Two-Pass Rectangular Cooling Channel with Staggered Arrays of Pin-Fins (곡관부 하류에 핀휜이 부착된 회전 냉각유로의 최적설계)

  • Moon, Mi-Ae;Kim, Kwang-Yong
    • The KSFM Journal of Fluid Machinery
    • /
    • v.13 no.5
    • /
    • pp.43-53
    • /
    • 2010
  • This study investigates a design optimization of a rotating two-pass rectangular cooling channel with staggered arrays of pin-fins. The radial basis neural network method is used as an optimization technique with Reynolds-averaged Navier-Stokes analysis of fluid flow and heat transfer with shear stress transport turbulent model. The ratio of the diameter to height of the pin-fins and the ratio of the streamwise spacing between the pin-fins to height of the pin-fin are selected as design variables. The optimization problem has been defined as a minimization of the objective function, which is defined as a linear combination of heat transfer related term and friction loss related term with a weighting factor. Results are presented for streamlines, velocity vector fields, and contours of Nusselt numbers, friction coefficients, and turbulent kinetic energy. These results show how fluid flow in a two-pass square cooling channel evolves a converted secondary flows due to Coriolis force, staggered arrays of pin-fins, and a $180^{\circ}$ turn region. These results describe how the fluid flow affects surface heat transfer. The Coriolis force induces heat transfer discrepancy between leading and trailing surfaces, having higher Nusselt number on the leading surface in the second pass while having lower Nusselt number on the trailing surface. Dean vortices generated in $180^{\circ}$ turn region augment heat transfer in the turning region and in the upstream region of the second pass. As the result of optimization, in comparison with the reference geometry, thermal performance of the optimum geometry shows the improvement by 30.5%. Through the optimization, the diameter of pin-fin increased by 14.9% and the streamwise distance between pin-fins increased by 32.1%. And, the value of objective function decreased by 18.1%.

Comparison of Various Heat Exchanger Performances in order for Air Compressor Intercooler Application (공기압축기의 인터쿨러 선정을 위한 열교환기의 형상별 성능해석)

  • Yoo, Sang-Hoon;Park, Sang-Gu;Yoon, Jeong-Pil;Jeong, Ji-Hwan
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.32 no.1
    • /
    • pp.73-81
    • /
    • 2008
  • Intercooling and aftercooling are required in order to operate air compressor, these are conducted through air-cooled or water-cooled heat exchangers. This study aims to find more suitable type of heat exchanger as a water-cooled intercooler of air compressor. Comparative performance evaluation among fin-tube heat exchanger and shell-and-tube (S&T) heat exchanger having various tubes such as circular tube, spiral tube, and internally finned tube was conducted. Thermal-hydraulic performance of each heat exchanger type is evaluated in terms of temperature drop and pressure drop. The comparisons show that shell-and-tube heat exchangers may have similar and larger heat transfer capacity to the fin-tube heat exchanger if tube diameter is reduced and multiple pass is adopted. For these cases, however, compressed air pressure drop in shell-and-tube heat exchanger become much larger than that in fin-tube heat exchanger.

The Effect of Soil Warming on the Greenhouse Heating Load (지중가온이 온실의 난방부하에 미치는 영향)

  • Nam, Sang-Woon
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.48 no.5
    • /
    • pp.51-60
    • /
    • 2006
  • In order to examine the heat transfer characteristic of a soil warming system and effects of soil warming on the greenhouse heating load, control experiments were performed in two greenhouses covered with double polyethylene film. One treated the soil warming with an electric heat wire and the other treated a control. Inside and outside air temperature, soil temperature and heat flux, and heating energy consumption were measured under the set point of heating temperature of $5,\;10,\;15,\;and\;20^{\circ}C$, respectively. Soil temperatures in a soil warming treatment were observed $4.1\;to\;4.9^{\circ}C$ higher than a control. Heating energy consumptions decreased by 14.6 to 30.8% in a soil warming treatment. As the set point of heating temperature became lower, the rate of decrease in the heating energy consumptions increased. The percentage of soil heat flux in total heating load was -49.4 to 24.4% and as the set point of heating temperature became higher, the percentage increased. When the set point of heating temperature was low in a soil warming treatment, the soil heat flux load was minus value and it had an effect on reducing the heating load. Soil heat flux loads showed in proportion to the air temperature difference between the inside and outside of greenhouse but they showed big difference according to the soil warming treatment. So new model for estimation of the soil heat flux load should be introduced. Convective heat transfer coefficients were in proportion to the 1/3 power of temperature difference between the soil surface and the inside air. They were $3.41\;to\;12.42\;W/m^{2}^{\circ}C$ in their temperature difference of $0\;to\;10^{\circ}C$. Radiative heat loss from soil surface in greenhouse was about 66 to 130% of total heating load. To cut the radiation loss by the use of thermal curtains must be able to contribute for the energy saving in greenhouse.

A Study on the Heat Rejection to Coolant in a Gasoline Engine (가솔린 엔진에서의 냉각수로의 전열량에 대한 연구)

  • 류택용;신승용;이은현;최재권
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.5 no.6
    • /
    • pp.77-88
    • /
    • 1997
  • The heat rejection to coolant is a dominant factor for building vehicle cooling system such as radiator and cooling fan. Since the vehicle cooling system also has effects on fuel consumption and noise, the study of heat rejection to coolant has been emphasized. However, the study on heat rejection to coolant has been mainly focused on the field that related to the characteristics of combustion and localized heat loss. It is no much of use in design for the entire cooling system because it is focused on such a specific point. In this work, the heat rejection rate to coolant for four different engines are obtained to derive a simple heat transfer empirical formula that can be applied to the engine cooling system design, and it is compared with the other studies. Also, to observe effects of engine operation factors and heat transfer factors on coolant, we measured the metal temperature and the heat rejection rate. The heat rejection to coolant does not depend significantly upon the coolant flowrate, but mainly upon the amount of air fuel mixture and the air fuel ratio as long as the composition of coolant does not change. The reduction of heat rejection to coolant did not effectively improve the fuel consumption, but was mostly converted to raise the exhaust gas temperature and the oil temperature.

  • PDF

Effects of Aspect Ratio on Local Heat/Mass Transfer in Wavy Duct (열교환기 내부 유로 종횡비 변화에 따른 국소 열/물질전달 특성 고찰)

  • Jang In Hyuk;Hwang Sang Dong;Cho Hyung Hee
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.17 no.6
    • /
    • pp.569-580
    • /
    • 2005
  • The present study investigates the convective heat/mass transfer characteristics in wavy ducts of a primary surface heat exchanger. The effects of duct aspect ratio and flow velocity on the heat/mass transfer are investigated. Local heat/mass transfer coefficients on the corrugated duct sidewall are determined using a naphthalene sublimation technique. The aspect ratios of the wavy duct are 7.3, 4.7 and 1.8 with the corrugation angle of $145\Omega$. The Reynolds numbers, based on the duct hydraulic diameter, vary from 300 to 3,000. The results show that at the low Re(Re $\leq$ 1000) the secondary vortices called Taylor-Gortler vortices perpendicular to the main flow direction are generated due to effect of duct curvature. By these secondary vortices, non-uniform heat/mass transfer coefficients distributions appear. As the aspect ratio decreases, the number of cells formed by secondary vortices are reduced and secondary vortices and comer vortices mix due to decreased aspect ratio at Re$\leq$1000. At Re >1000, the effects of corner vortices become stronger. The average Sh for the aspect ratio of 7.3 and 4.7 are almost same. But at the small aspect ratio of 1.8, the average Sh decreases due to decreased aspect ratio. More pumping power (pressure loss) is required for the larger aspect ratio due to the higher flow instability.