• 제목/요약/키워드: Heat transfer loss

검색결과 473건 처리시간 0.023초

종횡비가 큰 사각 덕트내 난류 유동의 대류 열전달 증진 기술에 대한 연구 (TURBULENCE HEAT TRANSFER ENHANCEMENT TECHNIQUE FOR SQUARE DUCT WITH HIGH ASPECT RATIO)

  • 이찬용;신승원;정하승;박승호
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2010년 춘계학술대회논문집
    • /
    • pp.305-307
    • /
    • 2010
  • In this study, we develop a method to achieve heat transfer enhancement inside a square duct with high aspect ratio without changing any inner structures. Especially, a method to lower the possible maximum temperature is suggested if constant heat flux is provided to single surface of square duct. Knowing the fact that heat transfer rate is inversely proportional to flow area, we proposed tapered channel concept which uses narrower gap toward the flow exit where the maximum temperature is expected. To maintain equivalent power consumption, inlet section has been enlarged. To verify the proposed concept, experimental tests have been performed.

  • PDF

태양열 이용 바이오메탄 분해 해석연구 (Simulation Analysis of Bio-Methane Decomposition Using Solar Thermal Energy)

  • 김하늘;이상남;이상직;김종규
    • 신재생에너지
    • /
    • 제17권1호
    • /
    • pp.40-49
    • /
    • 2021
  • In this study, the optical properties, heat transfer capabilities and chemical reaction performance of a methane thermal decomposition reactor using solar heat as a heat source were numerically analyzed on the basis of the cavity shape. The optical properties were analyzed using TracePro, a Monte Carlo ray tracing-based program, and the heat transfer analysis was performed using Fluent, a CFD program. An indirect heating tubular reactor was rotated at a constant speed to prevent damage by the heat source in the solar furnace. The inside of the reactor was filled with a porous catalyst for methane decomposition, and the outside was insulated to reduce heat loss. The performance of the reactor, based on cavity shape, was calculated when solar heat was concentrated on the reactor surface and methane was supplied into the reactor in an environment with a solar irradiance of 700 W/㎡, a wind speed of 1 m/s, and an outdoor temperature of 25℃. Thus, it was confirmed that the heat loss of the full-cavity model decreased to 13% and the methane conversion rate increased by 33.5% when compared to the semi-cavity model.

기존 노후건축물의 최적 리모델링 개선안 연구 (Analysis on Energy Demand Resulting From the Change in Window Area & Installation of Interior Exterior Blinds)

  • 김대원;정광섭;김영일;남아리새;오세민
    • 에너지공학
    • /
    • 제23권2호
    • /
    • pp.207-216
    • /
    • 2014
  • 에너지손실을 분석해 보면 열전달에 의한 손실과 공기유동에 의한 손실로 구분할수 있다. 열전달은 외벽, 지붕, 바닥의 열관류율에 의한 손실로 기존건축물의 가장 취약한 부분의 한 요소이다. 이런 손실을 방지 하려면 창을 포함한 외벽 전체의 평균 열관류율을 지역 기준값 이상으로 올리고 창의 기밀성을 확보함에 따라 방지 할수 있다. 노후건축물의 가장 취약한 부분이 외벽과 창호 이지만 출입문을 통한 침기량은 연돌효과에 의해 층계단을 타고 올라감과 동시에 각층의 공기를 흡입하여 더큰 유동을 잃으켜 층의 단열성 까지 취약하게 만드는 구조로 되어 있다. 현장 조사를 통한 진단과 에너지 개선처방이 제시될 때 반드시 건물전체에 대한 진단과 각층 부분에 대한 개선안이 함께 제출되어 단순히 창 교체만 하면 에너지절감을 이룰수 있다는 착각에서 벗어나야 할 것이다.

전자장비에서 벽면의 대류열방출 및 통기구의 효과를 고려한 3차원 자연대류 냉각 (Three-dimensional natural convection cooling of the electronic device with the effects of convective heat dissipation and vents)

  • 이관수;백창인;임광옥
    • 대한기계학회논문집
    • /
    • 제19권11호
    • /
    • pp.3072-3083
    • /
    • 1995
  • The numerical simulation on the three-dimensional natural convection heat transfer in the enclosure with heat generating chip is performed, and the effects of convective heat loss and vents are also examined. The effects of the Rayleigh number and outer Nusselt number (Nu$_{0}$) on the maximum chip temperature and the fractions of heat loss from the hot surfaces are investigated. The results show that conduction through the substrate is dominant in heat dissipation. With the increase of Rayleigh number, heat dissipation through the chip surfaces increases and heat loss through the substrate decreases. Maximum dimensionless temperature with vents is found to decrease about 40% compared to the one without vents at Nu$_{0}$=0.l. It is also shown that effects of size and location of the vents are negligible.ble.

확대모형 열교환기를 이용한 공기측 열전달 성능에 관한 연구 (A Study on Beat Transfer Characteristics in the Air Side of Large-scaled Heat Exchanger)

  • 변주석;이진호;홍만기;전창덕
    • 대한기계학회논문집B
    • /
    • 제29권9호
    • /
    • pp.1032-1041
    • /
    • 2005
  • This study is performed to investigate the heat transfer characteristics of heat exchanger according to the arrangement of fins as well as fin configuration by using the four times enlarged model. Friction factor, Colburn j factor and goodness factors are compared to each other to estimate performance of each case for 4 different kinds of fins, which are plain, single side slit, double side slit and louver fin. Results show that heat transfer would be altered by fin arrangement and that friction loss is more affected by fin configurations than by the fin arrangements. In particular, heat transfer depends more on the shape of front row than that of rear row. The heat transfer rate of combined fin arrangement increases a lot more under the same pressure drop than that of conventional fin arrangement. This indicates that the heat exchanger of higher efficiency would be designed by the proper combination of fins, of different shapes.

A flammability limit model for hydrogen-air-diluent mixtures based on heat transfer characteristics in flame propagation

  • Jeon, Joongoo;Choi, Wonjun;Kim, Sung Joong
    • Nuclear Engineering and Technology
    • /
    • 제51권7호
    • /
    • pp.1749-1757
    • /
    • 2019
  • Predicting lower flammability limits (LFL) of hydrogen has become an ever-important task for safety of nuclear industry. While numerous experimental studies have been conducted, LFL results applicable for the harsh environment are still lack of information. Our aim is to develop a calculated non-adiabatic flame temperature (CNAFT) model to better predict LFL of hydrogen mixtures in nuclear power plant. The developed model is unique for incorporating radiative heat loss during flame propagation using the CNAFT coefficient derived through previous studies of flame propagation. Our new model is more consistent with the experimental results for various mixtures compared to the previous model, which relied on calculated adiabatic flame temperature (CAFT) to predict the LFL without any consideration of heat loss. Limitation of the previous model could be explained clearly based on the CNAFT coefficient magnitude. The prediction accuracy for hydrogen mixtures at elevated initial temperatures and high helium content was improved substantially. The model reliability was confirmed for $H_2-air$ mixtures up to $300^{\circ}C$ and $H_2-air-He$ mixtures up to 50 vol % helium concentration. Therefore, the CNAFT model developed based on radiation heat loss is expected as the practical method for predicting LFL in hydrogen risk analysis.

속이 빈 원관에서 1차원적인 열전달 해석의 오차 (Errors in One-Dimensional Heat Transfer Analysis in a Hollow Cylinder Feedwater Pipe)

  • 강형석
    • 대한기계학회논문집B
    • /
    • 제20권2호
    • /
    • pp.689-696
    • /
    • 1996
  • A comparison is made of the heat loss from a hollow cylinder, computed using an one-dimensional analytic method and a two-dimensional separation of variables scheme. For a two-dimensional analysis, the temperature of the inner surface as a boundary condition can be varied along the length of the cylinder by varing the temperature variation factor, b. Comparisons of the heat loss from the hollow cylinder using these two methods are given as a function of non-dimensional cylinder length, the ratio of the outer radius to the inner radius, temperature variation factor and Biot number. The result shows that the value of the heat loss from the hollow cylinder obtained using the one-dimensional analytic method becomes close to the value given by the two-dimensional separation of variables scheme as the value of Biot number and the non-dimensional hollow cylinder length increase and as the ratio of the outer radius to the inner radius decreases.

$CH_4$/Air 예혼합화염의 고효율 연소조건에서 열손실에 따른 NOx 및 CO 배출특성 (Emission Characteristics of NOx and CO with Heat Loss Under High Efficiency Combustion Conditions of $CH_4$/Air Air Premixed Flame)

  • 현승호;황철홍;이창언;김세원;장기현
    • 한국연소학회지
    • /
    • 제13권1호
    • /
    • pp.1-9
    • /
    • 2008
  • Emission characteristics of NOx and CO with heat loss under high efficiency combustion conditions of $CH_4$/Air prmixed flame were examined numerically using detailed-kinetic chemistry. The one-dimensional combustor length was fixed 5cm, and the equivalence ratio was varied from 0.75 to 0.95. To consider the effects of heat loss on NOx and CO formation, the radiative heat loss rate and combined heat loss rate of conductive and convective heat transfer are included. The following conclusions were drawn. In order to reduce the NOx and CO emission level simultaneously, the temperature of product gases must be reduced under 1,800K as soon as possible but kept over 1,300K during the residence time which is needed to converge CO to $CO_2$.

  • PDF

멤브레인형 LNG선 Cargo의 만선항해시 열전달 해석 및 BOG 평가 (Heat Transfer Analysis and BOG Estimation of Membrane-Type LNG Cargo during Laden Voyage)

  • 허진욱;이영주;조진래;하문근;이중남
    • 대한기계학회논문집A
    • /
    • 제27권3호
    • /
    • pp.393-400
    • /
    • 2003
  • Excessive generation of BOG during the LNG transportation not only causes the severe financial loss but also leads to the unexpected disaster. Therefore, the carrier cargo insulating interior LNG should be carefully designed based upon an accurate heat transfer analysis. However. it is not simple to analyze heat transfer of LNG cargo, because it is in a complex insulation structure and LNG carrier experiences a complicated heat transfer according to various kinds of voyage conditions. In this paper, we carried out the transient finite element heat transfer analysis for a cargo of Mark-111 membrane-type LNG carrier during laden voyage, and we compared heat transfer rates between considering natural convection and considering conduction. For this goal, we developed a PCL program incorporating with a commercial MSC/NASTRAN FEM code.

경사진 사각리브가 부착된 열전달면의 수치최적화기법을 이용한 형상설계 (Shape Design of Heat Transfer Surfaces with Angled Ribs Using Numerical Optimization Techniques)

  • 김홍민;김광용
    • 대한기계학회논문집B
    • /
    • 제28권9호
    • /
    • pp.1051-1057
    • /
    • 2004
  • A numerical optimization procedure for the shape of three-dimensional channel with angled ribs mounted on one of the walls to enhance turbulent heat transfer is presented. The response surface method is used as an optimization technique with Reynolds-averaged Wavier-Stokes analyses of flow and heat transfer. SST turbulence model is used as a turbulence closure. Computational results for local heat transfer rate show reasonable agreements with experimental data. The pitch-to-height ratio of the rib and rib height-to-channel height ratio are set to be 9.0 and 0.1, respectively, and width-to-rib height ratio and attack angle of the rib are chosen as design variables. The objective function is defined as a linear combination of heat-transfer and friction-loss related terms with weighting factor. Full-factorial experimental design method is used to determine the data points. Optimum shapes of the channel have been obtained in the range from 0.0 to 0.1 of weighting factor.