• Title/Summary/Keyword: Heat transfer enhancement rate

Search Result 100, Processing Time 0.022 seconds

Heat Transfer Enhancement by Pulsating Flow in a Plate Heat Exchanger (판형 열교환기에서 맥동유동에 의한 열전달 촉진에 관한 실험적 연구)

  • Kim, Do-Kyu;Kang, Byung-Ha;Kim, Suk-Hyun
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.28 no.2
    • /
    • pp.199-206
    • /
    • 2004
  • The heat transfer enhancement by pulsating flow in a plate heat exchanger has been experimentally investigated in this study. The effect of the pulsating flow, such as pulsating frequency and flow rate on the heat transfer as well as pressure drop in a plate heat exchanger has been studied in detail. Reynolds number in cold side of a plate heat exchanger is varied 100∼530 while that of hot side is fixed at 620. The pulsating frequency is considered in the range of 5∼30 Hz. The results of the pulsating flow are also compared with those of steady flow. It is found that the average heat transfer rate as well as pressure drop is increased as flow rate is increased for both steady flow and pulsating flow cases. When pulsating flow is applied to the plate heat exchanger, heat transfer could be substantially increased in particular ranges of pulsating frequency or Strouhal number; St=0.36∼0.60 and pressure drop is also increased, compared with those of steady flow. However, in the region of low pulsating frequency or high pulsating frequency, heat transfer enhancement is in meager. Heat transfer enhancement map is suggested based on Strouhal number and Reynolds number of pulsating flow.

The effect of the shear-rate dependent thermal conductivity of non-Newtonian fluids on the heat transfer enhancement (전단율에 의존적인 비뉴턴 유체의 열전도율이 열전달 향상에 미치는 영향)

  • Sin, Se-Hyeon;Lee, Seong-Hyeok;Son, Chang-hyeon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.20 no.5
    • /
    • pp.1717-1724
    • /
    • 1996
  • The present study investigates the effect of the shear rate-dependent thermal conductivity of non-Newtonian fluids on the heat transfer enhancement in a pipe flow. An axially-constant heat flux boundary condition was adopted in the thermal fully developed region. The present analytical results of Nusselt numbers for various non-Newtonian fluids show heat transfer enhancement over those of a shear rate-independent thermal conductivity fluids. The present analytical results showed good agreement with the previous experiments which excluded the temperature-dependent viscosity effect on heat transfer. This study also proposes the use of a shear rate-dependent thermal conductivity fluids in the design of a heat exchanger for heat transfer enhancement as well as reduction of fouling.

Numerical heat transfer in a rectangular duct with a non-newtonian fluid with shear-rate dependent thermal conductivity (직사각형 덕트에서 전단율에 의존적인 열전도율을 갖는 비뉴턴 유체의 열전달 향사아에 관한 수치적 연구)

  • Kim, Byeong-Seok;Sin, Se-Hyeon;Son, Chang-Hyeon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.21 no.6
    • /
    • pp.773-778
    • /
    • 1997
  • The present study investigates the effect of the shear rate-dependent thermal conductivity of non-newtonian fluids on the heat transfer enhancement in a 2:1 rectangular duct flow. An axially-constant heat flux and a peripherally-constant temperature boundary conditions(H1) was adopted for a top-wall-heated configuration. The present numerical results of Nusselt numbers for SRDC(Separan) show heat transfer enhancement over those of SRIC. The Nusselt numbers increased linearly as Reynolds numbers increased. The heat transfer enhancement is due to an increased thermal conductivity near the wall, which is attributed to the shear rate-dependence.

Effects of Flow Resonance on Heat Transfer Enhancement and Pressure Drop in a Plate Heat Exchanger (유동공진이 판형 열교환기의 열전달 향상과 압력강하에 미치는 영향)

  • Han Sang Kyu;Kang Byung Ha
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.17 no.2
    • /
    • pp.165-172
    • /
    • 2005
  • Heat transfer enhancement of three types of brazed plate heat exchangers has been evaluated experimentally. The effects of flow resonance in a plate heat exchanger on the heat transfer rate and pressure drop have been investigated in a wide range of mass flow rates in detail. The problem is of particular interest in the innovative design of a plate heat exchanger by flow resonance. The results obtained indicate that both heat transfer coefficient and pressure drop are increased as mass flow rate is increased, as expected. It is also found that the heat transfer enhancement is increased with an increase in the plate pitch, while the heat transfer is decreased with a decrease in the chevron angle. Pressure drop also increased with an increase in the plate pitch and with a decrease in the chevron angle. Heat transfer enhancement in the plate heat exchangers is maximized by flow resonance and the resonance frequency of the present plate heat exchangers is found to be in the range of $10~15\;Hz$.

An Experimental Study on the Cooling Effect by a Turbulence Promoter in Impinging Air Jet System (충돌분류계(衝突噴流系)에서 난류촉진체(亂流促進體)에 의한 방열효과(放熱效果)에 관(關)한 연구(硏究))

  • Lee, Y.H.;Seo, J.Y.
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.4 no.1
    • /
    • pp.48-56
    • /
    • 1992
  • The purpose of this study was to investigate the enhancement of heat transfer without additional external power in the case of rectangular air jet impinging vertically on the flat heating surface. In an attempt to enhance the heat transfer rate in two-dimensional impinging jet, the technique used in the present study was placement of square rod bundles as a turbluence promoter in front of the heat transfer surface. The effects of the clearance between the flat plate and square rod, and the nozzle exit velocity on the heat transfer characteristics have been investigated experimentally. The results obtained through this study were summerized as follows. High heat transfer enhancement was achived by means of flow acceleration and thinning of boundary layer by inserting rods in front of the heating flat plate. The smaller the clearance between rod and heating plate was, the larger heat transfer effect became. Average Nusselt number reached maximum at $Re=5.76{\times}10^4$ and C=1㎜ and the enhancement rate of heat transfer became maxium at this condition with the enhancement ratio as high as about 1.427 when normalized by the flat plate value. The correlating equation of average Nusselt number and Reynolds number was obtained, which is $\bar{N}uo=1.324{\cdot}Re^{0.459}{\cdot}(C/A)^{-0.034}$.

  • PDF

Enhancement of Impinging Jet Heat Transfer Using Triangular Multi-Tabs (삼각형 멀티 탭을 이용한 충돌제트 열전달 향상 연구)

  • Lee Jeong-Wook;Lee Sang-Joon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.28 no.10
    • /
    • pp.1139-1146
    • /
    • 2004
  • The effect of triangular tabs attached at the perimeter of jet nozzle on heat transfer enhancement was investigated experimentally. The modified flow structure was visualized using a smoke-wire method. Four different types of jet nozzle having 0, 4, 6 and 8 tabs were tested at jet Reynolds number Re=15,000 to investigate the effect of tabs on the variation of heat transfer rate. The local and average Nusselt numbers are increased with increasing the number of tabs. At nozzle-to-plate distance of L/D=4, the average Nusselt number was increased about 9.9% at Re=15,000 in the impingement region for the case of 8 tabs attachment. As the nozzle-to-plate distance increases, however, the heat transfer enhancement effect of triangular tabs is reduced. For the case of 4 tabs, the heat transfer enhancement is not so distinctive at L/D=8. As the protrusion depth of tabs into the jet flow increases, the heat transfer rate is also enhanced when the nozzle-to-plate distance is smaller than L/D=6.

Experimental Investigation of Heat Transfer Enhancement in a Circular Duct with Circumferential Fins and Circular Disks

  • Taebeom Seo;Byun, Sang-Won;Jung, Myoung-Ryol
    • Journal of Mechanical Science and Technology
    • /
    • v.14 no.12
    • /
    • pp.1421-1428
    • /
    • 2000
  • The characteristics of heat transfer and pressure drop for fully developed turbulent flow in a tube with circumferential fins and circular were experimentally studied. The various spacing and sizes of circumferential fins and circular disks were selected as design parameters, while the effects of these parameters on heat transfer enhancement and pressure drop were investigated. In order to quantify the effect of heat transfer enhancement and the increase of pressure drop due to the fins and disks in a tube, the Nusselt numbers and the friction factors for various configurations and operating conditions were compared to those for a corresponding smooth tube. The results showed that the heat transfer rate was significantly enhanced by increasing the height of circumferential fins and decreasing the pitch of circumferential fins. On the other hand, the influence of the disk size and the fin-disk spacing were not significant. Based on the experimental results, a correlation for estimating the Nusselt number was suggested.

  • PDF

Numerical Study about Heat Transfer Enhancement of Water-Microparticles Suspension (물-미립자 현탁액의 난류 열전달 향상에 관한 수치해석적 연구)

  • 정세훈;손창현
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.24 no.3
    • /
    • pp.29-35
    • /
    • 2000
  • The present numerical study investigates heat transfer enhancement mechanism for suspensions of polystyrene particles in water. Numerical simulations were done for turbulent hydrodynamic fully developed flows in a circular duct with constant wall heat flux. The experimental result of microparticle suspensions show 25∼45% heat transfer enhancement over those of water. The present numerical results show the main parameter for the heat transfer enhancement of microparticle suspension in a circular duct is the change of velocity profile by the non-Newtonian fluid behavior.

  • PDF

Experimental investigation of heat transfer enhancement in horizontal bundle tubes on absorber (수평관군 흡수기의 전열촉진에 관한 실험적 연구)

  • Moon, Choon-Geun;Seol, Won-Sil;Kim, Jae-Dol;Yoon, Jung-In
    • Proceedings of the KSME Conference
    • /
    • 2000.04b
    • /
    • pp.328-334
    • /
    • 2000
  • This research was concerned with the enhancement of heat transfer by surfactant added to the aqueous solution of LiBr. Different horizontal tubes were tested with and without an additive of normal octyl alcohol. The test tubes were a bare tube, floral tube, hydrophilic tube. The additive concentration was about $0.05{\sim}5.5mass%$. The heat transfer coefficient was measured as a function of solution flow rate in the range of $0.01{\sim}0.034 kg/ms$. The experimental result were compared with cases without surfactant. The enhancement of heat transfer by Marangoni convection effect which was generated by addition of the surfactant is observed in each test tube.

  • PDF

Heat transfer enhancement of nanofluids in a pulsating heat pipe for heat dissipation of LED lighting

  • Kim, Hyoung-Tak;Bang, Kwang-Hyun
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.38 no.10
    • /
    • pp.1200-1205
    • /
    • 2014
  • The effect of nanofluids on the heat transfer performance of a pulsating heat pipe has been experimentally investigated. Water-based diamond nanofluid and aluminium oxide ($Al_2O_3$) nanofluid were tested in the concentration range of 0.5-5%. The pulsating heat pipe was constructed using clear Pyrex tubes of 1.85 mm in inner diameter in order to visualize the pulsating action. The total number of turns was eight each for heated and cooled parts. The supply temperatures of heating water and cooling water were fixed at $80^{\circ}C$ and $25^{\circ}C$ respectively. The liquid charging ratio of the nanofluid was 50-70%. The test results showed that the case of 5% concentration of diamond nanofluid showed 18% increase in heat transfer rate compared to pure water. The case of 0.5% concentration of $Al_2O_3$ nanofluid showed 24% increase in heat transfer rate compared to pure water. But the increase of $Al_2O_3$ nanofluid concentration up to 3% did not show further enhancement in heat transfer. It is also observed that the deposited nanoparticles on the tube wall played a major role in enhanced evaporation of working fluid and this could be the reason for the enhancement of heat transfer by a nanofluid, not the enhanced thermal conductivity of the nanofluid.