• 제목/요약/키워드: Heat strain

검색결과 992건 처리시간 0.031초

극저탄소강판의 자성에 미치는 변형소둔 결정립도의 영향 (Effects of Strain Annealing Grain Size on the Magnetic Properties of Extra-Low Carbon Steel)

  • 안성권;정원섭;박정웅
    • 열처리공학회지
    • /
    • 제19권4호
    • /
    • pp.208-218
    • /
    • 2006
  • The effects of the grain size on the magnetic properties in extra-low carbon steel after strain annealing were investigated. Two kinds of sample were prepared. One is the annealed sheet, which was annealed at $670^{\circ}C$ and $850^{\circ}C$ for various time periods after cold rolling. The other is the strain annealed sheet, which was temper rolled by 0.4% and subsequently strain annealed at the temperature ranging between $670^{\circ}C$ and $850^{\circ}C$ for various time periods. The grains after strain annealing became more coarse than those after primary annealing. The grains were coarsened due to the strain induced grain boundary migration (SIGM). It was found that the permeability tended to be increased and coercivity tended to be decreased with the increase of grain size. The optimum magnetic properties was achieved after strain annealing at $850^{\circ}C$ for 30 minites. Under this condition, the coercivity was measured to be 0.6 and the permeability was measured up to be 13000.

비조질 중탄소강의 정적 및 준동적 재결정에 관한 연구 (Static and Metadynamic Recrystallization of Non-Heat Treated Medium Carbon Steels)

  • 한창훈;김성일;유연철;이덕락;주웅용
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2000년도 추계학술대회 논문집
    • /
    • pp.29-32
    • /
    • 2000
  • The static and metadynamic recrystallization of non-heat treated medium carbon steel(Fe - 0.45wt.$\%C\;-\;0.6wt.\%Si\;-\;1.2wt.\%Mn\;-\;-0.12wt.\%Cr \;-\;0.1wt.\%V \;-\;0.017wt\%$.Ti) were studied by the torsion test in the strain rate range of 0.05 - 5 $sec^{-1}$, and in the temperature range of $900\;-\;1100\;^{\circ}C$. Interrupted deformation was performed with 2 pass deformation in the pass strain range of $0.25 {\varepsilon}_p(peak strain)\;and\;{\varepsilon}_p$, and in the interpass time range or 0.5 - 100 sec. The dependence or pass strain(${\varepsilon}_i$), strain rate( $\dot{\varepsilon}$ ), temperature(T), and interpass time($t_i$) on static recrystallization (SRX) and metadynamic recrystallization (MDRX) were predicted from the modified Avrami's equations respectively. Comparison of the softening kinetics between SRX and MDRX was indicated that the rate of MDRX was more rapid than that of SRX under the same deformation variables.

  • PDF

Ni 기 초합금 급냉응고 리본의 미세구조와 고온 인장특성에 관한 연구 (A Study on the Microstructures and High Temperature Tensile Properties of Ni-base Superalloy Melt-Spun Ribbons)

  • 한창석
    • 열처리공학회지
    • /
    • 제27권4호
    • /
    • pp.180-184
    • /
    • 2014
  • In order to make clear relationship between high temperature tensile properties and fine microstructure of rapidly solidified cast-type Ni-base superalloys without heat treatment required for consolidation process, tensile test was carried out by changing strain rate from $5{\times}10^{-5}s^{-1}$ to $2{\times}10^{-2}s^{-1}$ and test temperature from $900^{\circ}C$ to $1050^{\circ}C$ using IN738LC and Rene'80 melt-spinning ribbons by twin roll process which were superior to ribbons by single roll process from the viewpoint of structure homogeneity. The dependence of tensile strength on strain rate and test temperature was studied and strain rate sensitivity, m, were estimated from tensile test results. From this study, it was found that tensile strength was influenced by ${\gamma}^{\prime}$ particle diameter, test temperature and strain rate, and m of ribbons exhibited above 0.3 over $950^{\circ}C$.

마그네슘 합금의 고온 평면변형 압축에서 Pb 첨가에 따른 미세조직 및 집합조직 변화 (Effects of Pb Aaddition on Microstructur and Texture in High Temperature Plane Strain Compression of Magnesium Alloys)

  • 지예빈;윤지민;김권후
    • 열처리공학회지
    • /
    • 제37권1호
    • /
    • pp.23-28
    • /
    • 2024
  • As global warming accelerates, the transportation industry is increasing the use of lightweight materials with the goal of reducing carbon emissions. Magnesium is a suitable material, but its poor formability limits its use, so research is needed to improve it. Rare-earth elements are known to effectively control texture development, but their high cost limits commercial. In this study, changes in microstructure and texture were investigated by adding Pb, which is expected to have a similar effect as rare-earth elements. The material used is Mg-15wt%Pb alloy. Initial specimens were obtained by rolling at 773 K to a rolling reduction of 25% and heat treatment. Afterwards, plane strain compression was performed at 723 K with a strain rate of 5×10-2s-1 and a strain of -0.4 to -1.0. As a result, recrystallized grains were formed within the microstructure, and the main component of the texture changed from (0,0) to (30,26). The maximum axial density was initially 10.01, but decreased to 4.23 after compression.

부력의 영향을 최소화한 조건에서 대향류 확산화염의 화염 소화에 관한 실험적 연구 (Experimental Study on Flame Extinction in Buoyancy-minimized Counterflow Diffusion Flame)

  • 정용호;박진욱;박정;권오붕;윤진한;길상인
    • 한국연소학회지
    • /
    • 제19권2호
    • /
    • pp.8-14
    • /
    • 2014
  • Experiments were conducted to clarify role of the outermost edge flame on low-strain-rate flame extinction in buoyancy-suppressed non-premixed methane flames diluted with He and $N_2$. The use of He curtain flow produced a microgravity level of $10^{-2}-10^{-3}g$ in $N_2$- and He-diluted non-premixed counterflow flame experiments. The critical He and $N_2$ mole fractions at extinction with a global strain rate were examined at various burner diameters (10, 20, and 25 mm). The results showed that the extinction curves differed appreciably with burner diameter. Before the turning point along the extinction curve, low-strain-rate flames were extinguished via shrinkage of the outermost edge flame with and without self-excitation. High-strain-rate flames were extinguished via a flame hole while the outermost edge flame was stationary. These characteristics could be identified by the behavior of the outermost edge flame. The results also showed that the outermost edge flame was not influenced by radiative heat loss but by convective heat addition and conductive heat losses to the ambient He curtain flow. The numerical results were discussed in detail. The self-excitation before the extinction of a low-strain-rate flame was well described by a dependency of the Strouhal number on global strain rate and normalized nozzle exit velocity.

비대칭 압연 알루미늄의 소성변형비 (Plastic Strain Ratios of Asymmetry Rolled Aluminum Sheets)

  • 사이드무로드 아크라모프;김인수
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2007년도 춘계학술대회 논문집
    • /
    • pp.425-426
    • /
    • 2007
  • The physical and mechanical properties of the sheets metals are closely related to the presence of preferred crystallographic orientations which were produced by the manufacturing process. To obtain the aluminum alloys sheets with good Al sheet formability, the plastic strain ratio (or r-value) of AA1050 Al sheets after asymmetric rolling and subsequent heat treatment was studied. The AA1050 aluminum alloy sheets after asymmetric rolling with high reduction ratio and following heat treatment had the higher plastic strain ratio.

  • PDF

전위 및 공공을 고려한 고변형률 변형에 대한 재료 시뮬레이션 (A Material Simulation of High-Strain-Rate Deformation with Dislocations and Vacancies)

  • 최덕기;유한규
    • 대한기계학회논문집A
    • /
    • 제28권9호
    • /
    • pp.1306-1313
    • /
    • 2004
  • This paper addresses a theoretical approach to calculate the amount of the stored energy during high strain-rate deformations using atomistic level simulation. The dynamic behavior of materials at high strain-rate deformation are of great interest. At high strain-rates deformations, materials generate heat due to plastic work and the temperature rise can be significant, affecting various properties of the material. It is well known that a small percent of the energy input is stored in the material, and most of input energy is converted into heat. However, microscopic analysis has not been completed without construction of a material model, which can simulate the movement of dislocations and vacancies. A major cause of the temperature rise within materials is traditionally credited to dislocations, vacancies and other defects. In this study, an atomistic material model for FCC such as copper is used to calculate the stored energy.

메탄/공기 확산화염에서 복사 열손실로 인한 맥동 불안정에 관한 수치해석 (A Numerical Study on Radiation-Induced Oscillatory Instability in CH$_4$/Air Diffusion Flames)

  • 손채훈;정석호
    • 대한기계학회논문집B
    • /
    • 제25권1호
    • /
    • pp.29-35
    • /
    • 2001
  • Radiation-induced oscillatory instability in CH$_4$/Air diffusion flames is numerically investigated by adopting detailed chemistry. Counterflow diffusion flame is employed as a model flamelet and optically thin gas-phase radiation is assumed. Attention is focused on the extinction regime induced by radiative heat loss, which occurs at low strain rate. Once a steady flame structure is obtained for a prescribed value of initial strain rate, transient solution of the flame is calculated after a finite amount of strain-rate perturbation is imposed on the steady flame. Depending on the initial strain rate and the amount of perturbed strain rate, transient evolution of the flame exhibits various types of flame-evolution behaviors. Basically, the dynamic behaviors can be classified into two types, namely oscillatory decaying solution and diverging solution leading to extinction.

Cloning and Molecular Characterization of groESL Heat-Shock Operon in Methylotrophic Bacterium Methylovorus Sp. Strain SS1 DSM 11726

  • Eom, Chi-Yong;Kim, Eung-Bin;Ro, Young-Tae;Kim, Si-Wouk;Kim, Young-Min
    • BMB Reports
    • /
    • 제38권6호
    • /
    • pp.695-702
    • /
    • 2005
  • The groESL bicistronic operon of a restricted facultative methylotrophic bacterium Methylovorus sp. strain SS1 DSM 11726 was cloned and characterized. It was found to consist of two ORFs encoding proteins with molecular masses of 11,395 and 57,396 daltons, which showed a high degree of homology to other bacterial GroES and GroEL proteins. The genes were clustered in the transcription order groES-groEL. Northern blot analyses suggested that the groESL operon is transcribed as a bicistronic 2.2-kb mRNA, the steady-state level of which was markedly increased by temperature elevation. Primer extension analysis demonstrated one potential transcription start site preceding the groESL operon, which is located 100bp upstream of the groES start codon. The transcription start site was preceded by a putative promoter region highly homologous to the consensus sequences of Escherichia coli ${\sigma}^{32}$-type heat shock promoter, which functioned under both normal and heat shock conditions in E. coli. Heat shock mRNA was maximally produced by Methylovorus sp. strain SS1 approximately 10min after increasing the temperature from 30 to $42^{\circ}C$. The groESL operon was also induced by hydrogen peroxide or salt shock.

베이킹 온도에 따른 비조질강 기계적 특성 (A Study on Mechanical Properties of Micro-Alloyed Steel According to Baking Temperature)

  • 이승헌;이교택;권용남;김지훈
    • 소성∙가공
    • /
    • 제15권8호
    • /
    • pp.621-627
    • /
    • 2006
  • Recently, micro-alloyed steels which could eliminate heat treatments after forging has been developed. These non heat-treated micro-alloyed steels have several advantages over the conventional quenched and tempered steel for cold forging. First of all, long components can be fabricated with a better dimensional accuracy since bending of long forged part after quenching treatment could be avoided. And it is possible to eliminate two energy consuming heat treatment steps, which are a spherodizing before forging and quenching/tempering after forging. Therefore, more cost effective and environment friendly process could be designed. However, there is non-uniform distribution of strain occurred across the forged part, since these non heat-treated micro-alloyed steel use strain hardening mechanism. In the present study, it was investigated how to lessen non-uniformity and increase strength together for cold forging when a baking heat treatment is applied in micro-alloyed steels. For this purpose, micro-alloyed steels developed by Se-A Besteel recently was used for the experiment.