• Title/Summary/Keyword: Heat strain

Search Result 997, Processing Time 0.03 seconds

Cloning and Nucleotide Sequence Analysis of the rpoH Gene from Methylovorus sp. Strain SS1 DSM11726 (Methylovorus sp. Strain SS1 DSM11726으로부터 rpoH 유전자의 클로닝과 염기서열 분석)

  • Eom, Chi-Yong;Song, Seung-Eun;Park, Mi-Hwa;Kim, Young-Min
    • Microbiology and Biotechnology Letters
    • /
    • v.35 no.3
    • /
    • pp.177-183
    • /
    • 2007
  • Using complementation of RpoH deficient E. coli strain A7448, the rpoH gene encoding heat shock sigma factor 32 (${\sigma}^{32}$) from Methylovorus sp. strain SS1 DSM11726 was cloned and sequenced. Sequence analysis of a stretch of 1,796-bp revealed existence of an open reading frame encoding a polypeptide of 284 amino acid (32,006 dalton). Deduced amino acid sequence of the Methylovorus sp. strain SS1 RpoH showed that 59.6%, 39.1% and 51.4% identities with those of Nitrosomonas europaea (${\beta}$-proteobacteria), Agrobacterium tumefaciens ($\alpha$-proteobacteria) and E. coli (${\gamma}$-proteobacteria). The expression level of the functional ortholog of RpoH of Methylovorus sp. strain SS1 was increased transiently after heat induction, further indicating that it functions as a heat shock sigma factor.

Oscillatory Instability of Low Strain Rate Edge Flame (저신장율 에지 화염의 진동 불안정성)

  • Kim Kang-Tae;Park June-Sung;Kim Jeong-Soo;Oh Chang-Bo;Keel Sang-In;Park Jeong
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.30 no.4 s.247
    • /
    • pp.343-349
    • /
    • 2006
  • Systematic experiments in $CH_4/Air$ counterflow diffusion flames diluted with He have been undertaken to study the oscillatory instability in which lateral flame size was less than burner nozzle diameter and thus lateral heat loss could be remarkable at low global strain rate. The oscillatory instability arises for Lewis numbers greater than unity and occurs near extinction condition. The oscillation is the direct outcome from the advancing and retreating edge flame. The dynamic behaviors of extinction in this configuration can be classified into three modes; growing, harmonic and decaying oscillation mode near extinction. As the global strain rate decreases, the amplitude of the oscillation becomes larger. This is caused by the increase of lateral heat loss which can be confirmed by the reduction of lateral flame size. Oscillatory edge flame instabilities at low global strain rate are shown to be closely associated with not only Lewis number but also heat loss (radiation and lateral heat loss).

Correcting Stress-Strain Curves of Nimonic 80A Alloy based on Direct Measurement of Barreling and Heat Generation (압축시험에서의 배럴링 및 소성발열 직접 측정에 의한 Nimonic 80A 합금의 응력-변형률 선도 보정)

  • S.H. Kang;H.W. Jung;H. Lee;S.J. Kim;Y.S. Oh;J. Jung;S. Oh;H. Kim
    • Transactions of Materials Processing
    • /
    • v.32 no.4
    • /
    • pp.215-220
    • /
    • 2023
  • In this study, the correction process of stress-strain curves obtained from hot compression test is introduced since the barreling induced by friction and adiabatic heat generation induced by plastic work occur under high strain rate. A shear friction factor was quantitatively estimated by measuring the dimension of barreling and temperature rise due to adiabatic heat generation was directly measured during compression test. Thereafter, the stress-strain curves were re-evaluated by introducing several equations to correct the effects of the friction and temperature rise. It was found that adiabatic factor at strain rate of 10/s is in the range of about 0.5 to 0.75 for Nimonic 80A and decreases as the assigned temperature increases.

Mechanical properties and formability of asymmetrically rolled aluminum alloy sheet (무윤활 압연한 알루미늄 판재의 기계적 특성과 성형성)

  • Akramov, S.;Kim, In-Soo
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2009.05a
    • /
    • pp.429-431
    • /
    • 2009
  • Drawability and other mechanical properties of sheet metals are strongly dependent on their crystallographic orientations. In this paper the formability of the AA 5052 Al alloy sheets was investigated after asymmetric rolling and subsequent heat treatment. In most cases, after asymmetric rolling specimens showed a fine grain size and subsequent heat treated specimens showed that the ND // <111> texture component were observed. The anisotropy of formability is often described by the plastic strain ratios (r-value) as a function of the angle to the rolling direction in sheet metal. For a good formability, a high r-value is required in sheet metals. In the asymmetry rolled and subsequent heat treated Al alloy sheet, the variation of the plastic strain ratios have been investigated in this study, The plastic strain ratios of the asymmetry rolled and subsequent heat treated AA 5052 Al alloy sheets were higher than those of the original Al sheets. These could be related to the formation of ND // <111> texture components through asymmetric rolling in Al sheet.

  • PDF

Texture of Asymmetric Rolled Aluminum sheets (알루미늄 비대칭압연 집합조직)

  • Akramov, S.;Kim, In-Soo
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2008.05a
    • /
    • pp.477-479
    • /
    • 2008
  • Drawability and other mechanical properties of sheet metals are strongly dependent on their crystallographic orientations. In this paper the formability of the AA 5052 Al alloy sheets was investigated after asymmetric rolling and subsequent heat treatment. In most cases, after asymmetric rolling specimens showed a fine grain size and subsequent heat treated specimens showed that the ND//<111> texture component were observed. The anisotropy of formability is often described by the plastic strain ratios (r-value) as a function of the angle to the rolling direction in sheet metal. For a good formability, a high r-value is required in sheet metals. In the asymmetry rolled and subsequent heat treated Al alloy sheet, the variation of the plastic strain ratios have been investigated in this study. The plastic strain ratios of the asymmetry rolled and subsequent heat treated AA 5052 Al alloy sheets were higher than those of the original Al sheets. These could be related to the formation of ND//<111> texture components through asymmetric rolling in Al sheet.

  • PDF

The Effects of Heat Treatment on the Fatigue Life and Welding Residual Stress of Welded Carbon Steel Plates (탄소강 후판용접부의 피로수명 및 잔류응력에 미치는 열처리 영향)

  • An, I.T.;Kim, W.T.;Jo, J.R.;Moon, Y.H.
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.16 no.3
    • /
    • pp.141-147
    • /
    • 2003
  • The effects of heat treatment on the fatigue life and welding residual stress of welded plates were investigated in this study. The plates were welded by flux cored arc welding process, and post weld heat treated at $600^{\circ}C$ for 1 hour. The residual stresses of welded plates before and after post weld heat treatment were measured by hole drilling method. To measure the fatigue life of welded plates, low cycle fatigue tests under strain control and high cycle fatigue tests under load control were performed respectively, by using cylindrical specimens containing weld metal and heat affected zone. The obtained result shows that the post weld heat treatment reduces the residual stress, and resultantly changes the fatigue life of welded plate. Goodman diagrammatic analysis has also been performed to study the effect of post weld heat treatment on the high cycle fatigue life.

Effects of heat stress on growth performance, selected physiological and immunological parameters, caecal microflora, and meat quality in two broiler strains

  • Awad, Elmutaz Atta;Najaa, Muhamad;Zulaikha, Zainool Abidin;Zulkifli, Idrus;Soleimani, Abdoreza Farjam
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.33 no.5
    • /
    • pp.778-787
    • /
    • 2020
  • Objective: This study was conducted to investigate the effects of normal and heat stress environments on growth performance and, selected physiological and immunological parameters, caecal microflora and meat quality in Cobb 500 and Ross 308 broilers. Methods: One-hundred-and-twenty male broiler chicks from each strain (one-day-old) were randomly assigned in groups of 10 to 24 battery cages. Ambient temperature on day (d) 1 was set at 32℃ and gradually reduced to 23℃ on d 21. From d 22 to 35, equal numbers of birds from each strain were exposed to a temperature of either 23℃ throughout (normal) or 34℃ for 6 h (heat stress). Results: From d 1 to 21, strain had no effect (p>0.05) on feed intake (FI), body weight gain (BWG), or the feed conversion ratio (FCR). Except for creatine kinase, no strain×temperature interactions were observed for all the parameters measured. Regardless of strain, heat exposure significantly (p<0.05) reduced FI and BWG (d 22 to 35 and 1 to 35), immunoglobulin Y (IgY) and IgM, while increased FCR (d 22 to 35 and 1 to 35) and serum levels of glucose and acute phase proteins (APPs). Regardless of temperature, the Ross 308 birds had significantly (p<0.05) lower IgA and higher finisher and overall BWG compared to Cobb 500. Conclusion: The present study suggests that the detrimental effects of heat stress are consistent across commercial broiler strains because there were no significant strain×temperature interactions for growth performance, serum APPs and immunoglobulin responses, meat quality, and ceacal microflora population.

Texture and Formability Development of Non-lubrication Rolled Al Alloy Sheet (무윤활 압연한 알루미늄 합금의 집합조직과 성형성)

  • Akramov, Saidmurod;Kim, In-Soo
    • Transactions of Materials Processing
    • /
    • v.18 no.2
    • /
    • pp.116-121
    • /
    • 2009
  • Formability and other mechanical properties of sheet metals are strongly dependent on the texture. It was studied to improve the formability of the Al alloy(AA3003) sheets which were rolled under the non-lubrication condition and subsequent heat treated. In the non-lubrication rolled and subsequent heat treated Al alloy sheet, the variation of the plastic strain ratios were investigated in this study. Non-lubrication rolled Al sheets showed a fine grain size and after subsequent heat treated specimens showed that the $\beta$-fiber texture component was increased. The plastic strain ratios of the non-lubrication rolled and subsequent heat treated Al alloy sheets were about two times higher than those of the original Al sheets. These could be related to the formation of $\beta$-fiber texture components through the non-lubrication rolling and subsequent heat treatment in Al sheet.

Texture and Plastic Strain Ratio Changes with the Number of Passes of Asymmetric Rolling in AA1050 Al Alloy Sheet (비대칭 압연 패스 회수에 따른 AA1050 Al 판재의 집합조직과 소성변형비 변화)

  • Nam, Su-Kwon;Jeong, Hae-Bong;Kim, In-Soo
    • Transactions of Materials Processing
    • /
    • v.19 no.8
    • /
    • pp.502-507
    • /
    • 2010
  • The physical and mechanical properties and formability of sheet metals depend on preferred crystallographic orientations (texture). In this research work, the texture development and formability (plastic strain ratios) of AA1050 Al alloy sheets after 3 and 10 passes of asymmetric rolling and subsequent heat treatment were investigated. The plastic strain ratios of 10 passes asymmetrically rolled and subsequent heat treated samples are 1.3 times higher than those of the initial AA1050 Al alloy sheets. The ${\Delta}r$ of 10 passes of asymmetrically rolled and subsequent heat treated samples is 1/30 times lower than those of the initial AA1050 Al alloy sheets. The plastic strain ratios of 10 passes of asymmetrically rolled and subsequent heat treated Al sheets are higher than those of 3 passes ones. These results could be attributed to the formation of $\gamma$-fiber, ND//<111>, and the other texture components by means of asymmetric rolling in Al sheets.

A Study the Behavior of Plastic Deformation in Weld HAZ of Mild Steel (軟鋼 熔接熱影響部의 塑性變形擧動에 關한 硏究 II)

  • 박창언;정세희
    • Journal of Welding and Joining
    • /
    • v.10 no.1
    • /
    • pp.43-51
    • /
    • 1992
  • The plastic zone formed around a notch tip is important in analyzing the fracture toughness of structures and particularly weld cracks existed in the weld HAZ (heat affected zone) which produces local plastic deformation at the crack tip. Therefore, in order to analyze the fracture toughness in weld HAZ, it is necessary to investigate the new fracture toughness parameter $K_{c}$ $^{*}$ and critical plastic strain energy $W_{p}$ $^{c}$ according to the shape and size of the plastic zone. 1) If the temperature corresponding to $K_{c}$ $^{*}$=130kg-m $m^{-3}$ 2/ is determined, transition temperature $T_{tr}$ the magnitude of plastic zone size, and heat input change depending on the fracture toughness. The blunted amounts of the parent and weld HAZ show mild linear variation until .delta.=0.4mm and then increase very steeply there after. 2) The relation between the plastic strain energy( $W^{p}$ ) and transition temperature( $T_{*}$tr) in parent metal is more sensitive than that of weld HAZ. However, the plastic strain energy depends on the transition temperature, and thus the yield stress, .sigma.$_{ys}$ becomes an important parameter for plastic strain energy. 3) The critical plastic strain energy( $W_{p}$ $^{c}$ ) absorbed by the plastic zone at the notch tip indicated in case of parent metal: 60J/mm, in case of heat input(20KJ/cm): 75J/mm, in case of heat input(30KJ/cm); 50J/mmJ/mm.

  • PDF