• Title/Summary/Keyword: Heat storage

Search Result 1,513, Processing Time 0.027 seconds

Experiment on measures of heat collection for passive solar water wall systems that provide heat storage and natural lighting control (축열과 채광조절을 겸한 자연형 태양열 수벽시스템의 집열방식별 성능실험)

  • Oh, Young-hoon;Choi, Ji-eun;Lee, Chul-sung;Yoon, Jong-ho
    • KIEAE Journal
    • /
    • v.16 no.4
    • /
    • pp.63-69
    • /
    • 2016
  • Purpose: This preliminary study investigated a potential of the water wall systems that provide heat storage and natural lighting control simultaneously. Method: In order for transparency of the water wall to be controlled, the study first proposed two measures: to adjust transparency of the water wall; to control transparency of water wall surface. The performance of two measures then was verified and compared by experiments. In addition, a trade-off between heat collect and heat storage resulting from using additive for adjusting transparency was investigated. Result: The experiment showed that the two measures are similar in performance. The investigation of trade-off relation showed the additive should have the same heat storage as the water to prevent decrease in thermal performance of the water wall. As an economical measure to control transparency of the water wall, this study suggested a measure of secondary heat transfer systems using shading device that first absorbs solar radiation and then transfers heat to the water wall. The experiment show that performance of the proposed measure is similar to controlling transparency of water wall surface. In conclusion, it is expected that the performance of the water wall can be economically maximized by using the proposed mean in terms of heating, cooling and lighting energy saving.

A Study on the Heat Pump-Latent Heat Storage Type (열펌프-잠열축열 온돌 시스템 연구)

  • 송현갑;박문수
    • Journal of Biosystems Engineering
    • /
    • v.26 no.4
    • /
    • pp.385-390
    • /
    • 2001
  • The Ondol system using both air-to-water heat pump and PCM(Phase Change Material) was constructed, and the effects of ambient air temperature on COP(Coefficient of Performance) of heat pump, the amount of heat supplied to the Ondol in the heating process, the heat storage in the PCM and the variation of Ondol room temperature were analyzed. The results from this study could be summarized as follows: 1. The COP of the heat pump (3 PS) was in proportion to the ambient air temperature. 2. When the ambient air temperature was varied between -10$^{\circ}C$ and -7$^{\circ}C$, the air temperature in the Ondol room was maintained between 16$^{\circ}C$ and 22$^{\circ}C$. As the results, it was certified that the heat pump-latent heat storage type Ondol system could be a comfortable residential heating system in the winter. 3. The maximum radiation and convection heat transfer from Ondol surface was 206.2 kJ/㎥hr and 82.6 kJ/㎥hr respectively. As the results, it could be confirmed that the radiation was major heat transfer mechanism for the Ondol room heating.

  • PDF

Study on Heat Transfer Characteristics of Screen Type Heat Storage Materials (집강형 축열재의 열전달 특성에 관한 연구)

  • Pak, Hi-Yong;Park, Woong-Ki
    • The Magazine of the Society of Air-Conditioning and Refrigerating Engineers of Korea
    • /
    • v.10 no.2
    • /
    • pp.81-89
    • /
    • 1981
  • Experimental results for convective heat transfer from a number of screen type heat storage materials, made of stainless steel and brass, were obtained by the use of the transient technique. The effects of the material, the size of mesh, and the number of screens. on the heat transfer coefficient could not be detectable A dimensionless correlation describing the convective heat transfer from the screen type heat storage materials is given in the range of Reynolds number between 60 and 1000.

  • PDF

Cold Energy Storage System Using Direct Contact Heat Transfer (직접 접촉식을 이용한 빙축열 시스템)

  • Lee, Y.P.;Yoon, S.Y.;Lee, C.S.
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.6 no.3
    • /
    • pp.247-258
    • /
    • 1994
  • In this study, experimental investigations to find cold energy storage performance have been made for two different temperatures at condenser. Temperatures at inlet and outlet of condenser were measured to calculate global heat transfer coefficient of direct contact method in our cold energy storage system. Also storage performance by direct contact method was compared with that of Ice-On-Coil type ice storage which was calculated by analytic solution. Results show that, in the case of $-8.0^{\circ}C$ at condenser inlet, heat transfer coefficient of direct contact method is 3.25 times higher than that of conventional method and COP of system is improved by using R141b as refrigerant which produces gas hydrate and has higher phase change temperature than $0.0^{\circ}C$.

  • PDF

An Experimental Study on Thermal Properties of Clathrate for Cold Storage Applications (저온축열용 포접화합물의 열물성에 관한 실험적 연구)

  • 한영옥;정낙규;김진흥
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.12 no.8
    • /
    • pp.725-734
    • /
    • 2000
  • The objective of this paper is to investigate the thermal properties of TMA clathrate applicable to cold storage system for building air-conditioning. Especially, the test tube experiments are peformed by comparing and analyzing the temperature of phase change, specific heat and subcooling characteristic according to the variation of concentrations and temperature of heat source in TMA clathrate. The results are summarized as follows; 1) temperature of phase change is dropped as the temperature of heat source is lower, 2) the effect of subcooling suppression with about $9.3^{\circ}C$ is confirmed when the temperature of heat source is $-10^{\circ}C$ in case of 30wt%, while the temperature of subcooling is about $0^{\circ}C$ when the temperature of heat source is $-15^{\circ}C$ in case of 25, 29wt% and 30wt% . Thus, the effect of subcooling suppression is greater as the temperature of heat source is lower. Additionally, the concentrative study is needed on mass concentration causing the phase change without subcooling phenomenon when the temperature of heat source is $-15^{\circ}C$ Thus, it is concluded that TMA clathrate has proper properties as the cold storage medium for building air-conditioning.

  • PDF

Performance Evaluation of a Defrosting System Using the Condensation Heat of a Refrigerator in Cold Storage (저온창고에서 냉동기 응축폐열을 이용한 제상시스템 성능평가)

  • Park, Chunwan;Lee, Donggyu;Im, Kwanbin;Kang, Chaedong
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.26 no.2
    • /
    • pp.72-78
    • /
    • 2014
  • In a cold chain, the refrigerator is also employed for defrosting, by using an electric heater, which consumes 15% of the power for the system operation. In this study, the condensation heat of the refrigerant was suggested as the heat source of defrosting heat, instead of that from an electric defrost heater. The heat for defrosting was stored to a phase change material (PCM, NMP : $52^{\circ}C$) in thermal storage, and was periodically supplied to the evaporator by a circulation loop of brine. As a result, a defrost time by the PCM was obtained that was less than or equal to that by the electric heater. Moreover, power consumption during defrosting was saved by up to 99% of that of the electric heater.

Performance Analysis on a Heat Pump System using Waste Heat (폐열이용 열펌프시스템의 성능에 관한 연구)

  • Park, Youn Cheol;Song, Lei;Ko, Gwang Soo
    • Journal of the Korean Society for Geothermal and Hydrothermal Energy
    • /
    • v.14 no.4
    • /
    • pp.53-60
    • /
    • 2018
  • This study was conducted for analysis of a heat pump system using waste heat in an enclosed space such as a green house. The model was developed with mathematical equations in literature and Engineering Equation Solver (EES) was used to get the solution of the developed equations. The simulation results have 5% of reliability comparing the results with actual test data of heat pump system's dynamic operation. The operating performance of the system was calculated with variation of working fluid temperature in the thermal storage tank such as $25^{\circ}C$, $35^{\circ}C$, $45^{\circ}C$ and $55^{\circ}C$. As a result, the system's the highest total heating capacity shows 280 kWh and the storage tank's operating time decreased as the starting storage tank's temperature was high.

A Comparative Study on Heat Loss in Rock Cavern Type and Above-Ground Type Thermal Energy Storages (암반공동 열에너지저장과 지상식 열에너지저장의 열손실 비교 분석)

  • Park, Jung-Wook;Ryu, Dongwoo;Park, Dohyun;Choi, Byung-Hee;Synn, Joong-Ho;Sunwoo, Choon
    • Tunnel and Underground Space
    • /
    • v.23 no.5
    • /
    • pp.442-453
    • /
    • 2013
  • A large-scale high-temperature thermal energy storage(TES) was numerically modeled and the heat loss through storage tank walls was analyzed using a commercial code, FLAC3D. The operations of rock cavern type and above-ground type thermal energy storages with identical operating condition were simulated for a period of five consecutive years, in which it was assumed that the dominant heat transfer mechanism would be conduction in massive rock for the former and convection in the atmosphere for the latter. The variation of storage temperature resulting from periodic charging and discharging of thermal energy was considered in each simulation, and the effect of insulation thickness on the characteristics of heat loss was also examined. A comparison of the simulation results of different storage models presented that the heat loss rate of above-ground type TES was maintained constant over the operation period, while that of rock cavern type TES decreased rapidly in the early operation stage and tended to converge towards a certain value. The decrease in heat loss rate of rock cavern type TES can be attributed to the reduction in heat flux through storage tank walls followed by increase in surrounding rock mass temperature. The amount of cumulative heat loss from rock cavern type TES over a period of five-year operation was 72.7% of that from above-ground type TES. The heat loss rate of rock cavern type obtained in long-period operation showed less sensitive variations to insulation thickness than that of above-ground type TES.

Performance Enhancement of the Heat Pump Using the Refrigerant Subcooling System (냉매 과냉각 시스템을 이용한 열펌프의 성능향상에 관한 연구)

  • 손창효;윤찬일;박승준;이동건;오후규
    • Proceedings of the Korean Society of Marine Engineers Conference
    • /
    • 2001.05a
    • /
    • pp.106-111
    • /
    • 2001
  • The performance characteristics of heat pump system using the new refrigerant subcooling system were investigated. The new heat pump system has the ice storage tank to accumulate the latent heat of the refrigerant during the night-time. The heat is released to subcool the saturated refrigerant liquid at the outlet of a condenser in the daytime. The experimental apparatus is a well-instrumented heat pump which consisted of a refrigerant loop and a coolant loop. The test sections(condenser and evaporator) were made of tube-in-tube heat exchanger with the horizontal copper tube of 12.7[mm] outer diameter and 9.5[mm] inner diameter. The evaporating temperatures ranged from $-5[^{\circ}C]$ to $0[^{\circ}C]$ and the subcooling degrees of the refrigerant varied from $15[^{\circ}C]$ to $25[^{\circ}C]$. The test of the ice storage was carried out at evaporating temperature of $-10[^{\circ}C]$ and the ice storage mode is an ice-on-coil type. The main results were summarized as follows ; The refrigerant mass flow rate and compressor shaft power of the heat pump system were independent of the subcooling degrees. The cooling capacity o the heat pump system increases as the evaporating temperature and subcooling degree increases. The cooling capacity of the heat pump system is about 25 to 30% higher than that of normal heat pump system. The COP of the heat pump system which subcooled the refrigerant liquid at the outlet of the condenser is about 28% higher than that of the normal heat pump system.

  • PDF

Performance Improvement of Stratified Thermal Storage Tank Using Heat Insulator (단열층 사용을 통한 성층 축열조 성능개선)

  • Lim, Se Hwa;Lee, Tae Gyu;Shin, Seungwon
    • Transactions of the KSME C: Technology and Education
    • /
    • v.2 no.1
    • /
    • pp.65-72
    • /
    • 2014
  • The purpose of this study is to design a heat insulator for reducing available energy loss in stratified thermal storage tank. Heat insulator is operated by buoyancy effect from density difference between hot and cold water without extra equipment. Analysis model using the Matlab Simulink was developed to estimate the internal temperature distribution in thermal storage tank and also used to select proper material and thickness of the heat insulator. Operational feasibility was confirmed through reduced scale experiment. As a result, heat insulator can effectively delay the formation of thermal boundary layer between hot and cold water. In reduced scale experiment, heat insulator can preserve additional 1540J of available energy. When applied to the real thermal storage tank, increase of 6% thermal storage efficiency can be expected.