• Title/Summary/Keyword: Heat resistant

Search Result 613, Processing Time 0.024 seconds

Development of Fe-12%Cr Mechanical-Alloyed Nano-Sized ODS Heat-Resistant Ferritic Alloys

  • 김익수;최병영
    • Transactions of Materials Processing
    • /
    • v.8 no.3
    • /
    • pp.265-265
    • /
    • 1999
  • The development of mechanical alloying (MA)-oxide dispersion strengthened (ODS) heat-resistant ferritic alloys of Fe-12%Cr with W, Ti and Y₂O₃additions were carried out. Fe-12%Cr alloys with 3%W, 0.4%Ti and 0.25% Y₂O₃additions showed a much finer and more uniform dispersion of oxide particles among the alloy system studied. Nano-sized oxides dispersed in the alloys suppress the grain growth during annealing at a high temperature and resulted in the remarkable improvement of creep strength. The oxide phase was identified as a complex oxide type of Y-Ti-O.

Effect of Ni on the High Strength Characteristic of 9Cr Ferritic Heat Resistant Steel Applied to the Power Plants (발전플렌트용 9Cr 페라이트 내열강의 고온강도 특성에 미치는 Ni의 영향)

  • Kang, C.Y.;Miyahara, K.
    • Journal of Power System Engineering
    • /
    • v.4 no.1
    • /
    • pp.74-80
    • /
    • 2000
  • This present study was investigated effect of Ni contents on the high temperature strength characteristic in 9Cr ferritic heat-resistant steel added 1.7%W in place of Mo in order to restraint laves phase formation. Precipitation amount of carbide, number of particle per unit area and particle size of carbide were decreased with increase of Ni content. In the steels, carbides of $M_{23}C_6$ type was mainly precipitated, but laves phases could not precipitated. Tensile and yield strength, creep strength and creep rupture time was decreased, but elongation were increased due to decreasing of particle number per unite area and carbide amount precipitated with increase of Ni content.

  • PDF

Characteristics of Liquid Phase Diffusion Bonded Joints Using Newly Developed Ni-3Cr-4Si-3B Insert Metal of Heat Resistant Alloy (신개발 Ni-3Cr-4Si-3B 삽입금속으로 액상확산접합한 내열주강 접합부의 특성)

    • Journal of Welding and Joining
    • /
    • v.18 no.6
    • /
    • pp.62-67
    • /
    • 2000
  • Metallurgical characteristics of bonded region and high temperature mechanical properties of heat resistant alloy, Fe-35Ni-26Cr during liquid phase diffusion bonding were investigated employing AM17 insert metal. The insert metal for bonding, AM17 was newly developed Ni-base metal using interpolation method. Bonding of specimens were carried out at 1,403~1,463K for 600s in vacuum. The microconstituents in the bonded interlayer disappeared in the bonding temperature over 1,423K. The microstructures, alloying elements and hardness distribution in the base metal. The tensile strength and elongation of the joints at elevated temperatures were the same level as one of the base metal in the bonding temperature over 1,423K. The creep rupture strength and rupture lives of joints were almost identical to those of base metal.

  • PDF

Determination of ECM parameter Base on surface Roughness for Ni base Heat Resistant Alloy (Ni기 내열합금의 표면조도에 의한 전해가공조건의 설정)

  • 이상준;정윤교
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 1999.05a
    • /
    • pp.256-262
    • /
    • 1999
  • By development of heat resistant alloy, there are much improvement of gas turbine engines. But heat resistant alloy has difficulty of machining. therefore, ECM (Electrochemical Machining) is used for Machining of 3 dimensional curved surface of Ni-base alloy. The purpose of this paper is to investigate ECM parameters that make tile good surface for Ni-base alloy blade. For this purpose, we have been investigated that center line average surface roughness(R$\sub$a/), average R$\sub$a/, Maximum R$\sub$a/ and Standard deviation of R$\sub$a/ for measuring positions is influenced on ECM parameters such as electrolyte types, dwell time, electrolyte pressure and sort of electrolyte for Inconel 718 and Waspaloy.

  • PDF

Isothermal Transformation Behavior of 10% Cr Heat Resistant Steel Fabricated by Centrifugal Casting Process (원심주조법으로 제조된 10% Cr 내열강의 등온 변태 거동)

  • Kim, J.E.;Lee, J.H.;Kim, D.H.;Yoo, W.D.;Lee, J.H.
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.27 no.2
    • /
    • pp.72-78
    • /
    • 2014
  • Isothermal transformation behavior of a 10% Cr heat resistant steel fabricated by centrifugal casting process was investigated. Normalized specimen at $1100^{\circ}C$ for 1 hour was isothermally annealed at temperature range between $600^{\circ}C$ and $700^{\circ}C$ with various time. The annealed specimen had eutectoid structure which was generated along austenitic grain boundary during isothermal annealing. Areal fraction of eutectoid structure increased up to 25% after holding at $700^{\circ}C$ for 20 hours. It was observed that austenitic matrix was transformed to ferrite structure and fine $M_{23}C_6$ carbides with increase of annealing time. Time-temperature-transformation diagram of the centrifugally cast 10% Cr steel with 0.18 wt% C was plotted based on the results of isothermal transformation behavior.

Effect of Aging Treatment on the Mechanical Properties and Damping Capacity of 12Cr Heat Resistant Steel with Ferrite Phase (페라이트 상을 갖는 12Cr 내열강의 기계적성질 및 감쇠능에 미치는 시효처리의 영향)

  • Kang, C.Y.;Choi, H.G.;Park, H.K.;Sung, J.H.;Lee, D.H.
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.24 no.1
    • /
    • pp.23-30
    • /
    • 2011
  • This study was carried out to investigate the effect of aging treatment on the mechanical properties and damping capacity of 12Cr heat resistant steel with ferrite phase. While hardness values in ferrite phase was not changed, that in martensite phase was dramatically dropped in early stage of aging treatment and then gradually decreased with increase of aging time. As aging treatment was carried out, the precipitation was not detected in ferrite phase, while carbides were precipitated in martensite phase. With increasing the aging time, tensile strength eventually decreased while impact toughness increased rapidly in the early stage of aging and then gradually increased. Besides, it was confirmed that damping capacity was not changed in the early stage of aging and then gradually increased with increase of aging time.

Effect of pH and Nisin on Heat Resistance of Listeria monocytogenes Scott A (Listeria monocytogenes의 열저항성에 미치는 pH와 Nisin의 효과)

  • 이신호;조현순
    • Microbiology and Biotechnology Letters
    • /
    • v.21 no.3
    • /
    • pp.200-206
    • /
    • 1993
  • The effect of pH (7, 5 and 4) and nisin (100 and 200IU/ml) on heat resistance of Listeria monocytogenes Scott A were determined using citrate-phosphate buffer system. Heat resistance of vegetative and starved cell was decreased as pH value was lower at 65 and 72C. Starved L. monocytogenes was more resistant than vegetative cell at both temperature. Heat resistance of vegetative and starved cell was decreased significantly with treatment of nisin. The effect of nisin was increased significantly at low pH(5, 4). Adherent microcolony was more resistant to heat and nisin than planktonic cell. Contamination of L. monocytogenes may be prevent by using nisin in food and food processing environments.

  • PDF

A Study on the Ignition Delay Effect by Flame-Resistance Paint Treatment (방염 처리에 따른 화재지연 효과 연구)

  • Oh, Kyu-Hyung;Kim, Hwang-Jin;Lee, Sung-Eun
    • Fire Science and Engineering
    • /
    • v.23 no.2
    • /
    • pp.111-116
    • /
    • 2009
  • 17 kinds of fire resistant paint which are currently used were painted on the MDF(middle density fiber board), which suitable to the regulation of Fire Service Act. And we investigate a ignition delay effect under a exposure condition of radiative heat of fire. Radiative heat flux was controlled from $10kW/m^2$ to $30kW/m^2$ using the cone heater. Ignition time, ignition type and surface temperature of the sample were measured. Based on the experimental result, critical heat flux of the fire resistant paint treated sample was $10kW/m^2$ and there were no ignition delay effect above the $30kW/m^2$. And it was found that it will be difficult to expect the fire resistant effect above $400^{\circ}C$ of sample surface temperature.

Morphological, Physiological and Biochemical Responses of Gerbera Cultivars to Heat Stress

  • Chen, Wen;Zhu, Xiaoyun;Han, Weiqing;Wu, Zheng;Lai, Qixian
    • Horticultural Science & Technology
    • /
    • v.34 no.1
    • /
    • pp.1-14
    • /
    • 2016
  • Heat stress is an agricultural problem for Gerbera jamesonii, and it often causes poor seedling growth, reduced flower yield and undesirable ornamental characteristics of flowers. However, little is known about the effect of heat stress on the morphological, physiological and biochemical characteristics of gerbera plants. Here, the responses of six cultivars of Gerbera jamesonii to heat stress were investigated. Under a 1-d heat treatment at $45^{\circ}C$, the leaves of gerbera cultivars showed yellowing, wilting, drying and death to varying degrees. The heat treatment also resulted in increased electrical conductivity, decreased soluble protein and chlorophyll contents, and the accumulation of malondialdehyde (MDA) and proline in leaves. Moreover, heat tolerance differed among the six tested gerbera cultivars. Our results demonstrated that among the six gerbera cultivars, 'Meihongheixin' is a heat-resistant cultivar, whereas 'Beijixing' is a heat-sensitive one. 'Shijihong' and 'Linglong' are relatively heat-resistant cultivars, and 'Dadifen' and 'Taiyangfengbao' are relatively heat sensitive.

A Study for Structural Stabilities of Beams Built with TMC Fire Resistant Steels by Analytical Method at High Temperatures (해석적 방법에 의한 TMC 건축용 내화강재 적용 보부재의 고온 내력평가 연구)

  • Kwon, In-Kyu
    • Fire Science and Engineering
    • /
    • v.31 no.6
    • /
    • pp.60-66
    • /
    • 2017
  • Steel framed building can be destroyed due to deteriation of structural stabilities in a fire. This leads a TMC Fire Resistant Steels and this study analyzed the structural stabilities such as a deflection and a reduction of maximum load capacity for the structural beams built with a TMC Fire Resistant Steel. In this study the structural stabilities were evaluated using a mechanical properties in high temperatures not only a heat transfer theory but a heat stress anlaysis with a statistically determinated beam and a statistially indeternated one. The results showed that a TMC Fire Resistant Steels demonstrated a little lower those of Fire Resistant Steels.