Browse > Article
http://dx.doi.org/10.12972/kjhst.20160018

Morphological, Physiological and Biochemical Responses of Gerbera Cultivars to Heat Stress  

Chen, Wen (School of Agriculture and Food Science, Zhejiang Agriculture & Forestry University)
Zhu, Xiaoyun (School of Landscape and Architecture, Zhejiang Agriculture & Forestry University)
Han, Weiqing (School of Agriculture and Food Science, Zhejiang Agriculture & Forestry University)
Wu, Zheng (School of Agriculture and Food Science, Zhejiang Agriculture & Forestry University)
Lai, Qixian (School of Agriculture and Food Science, Zhejiang Agriculture & Forestry University)
Publication Information
Horticultural Science & Technology / v.34, no.1, 2016 , pp. 1-14 More about this Journal
Abstract
Heat stress is an agricultural problem for Gerbera jamesonii, and it often causes poor seedling growth, reduced flower yield and undesirable ornamental characteristics of flowers. However, little is known about the effect of heat stress on the morphological, physiological and biochemical characteristics of gerbera plants. Here, the responses of six cultivars of Gerbera jamesonii to heat stress were investigated. Under a 1-d heat treatment at $45^{\circ}C$, the leaves of gerbera cultivars showed yellowing, wilting, drying and death to varying degrees. The heat treatment also resulted in increased electrical conductivity, decreased soluble protein and chlorophyll contents, and the accumulation of malondialdehyde (MDA) and proline in leaves. Moreover, heat tolerance differed among the six tested gerbera cultivars. Our results demonstrated that among the six gerbera cultivars, 'Meihongheixin' is a heat-resistant cultivar, whereas 'Beijixing' is a heat-sensitive one. 'Shijihong' and 'Linglong' are relatively heat-resistant cultivars, and 'Dadifen' and 'Taiyangfengbao' are relatively heat sensitive.
Keywords
cultivar comparisons; Gerbera jamesonii; heat tolerance; phenotypic analysis; physiological and biochemical characteristics;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Guilioni, L., J. Wery, and F. Tardieu. 1997. Heat stress-induced abortion of buds and flowers in pea: is sensitivity linked to organ age or to relations between reproductive organs. Ann. Bot. 80:159-168.   DOI
2 Gulen, H. and A. Eris. 2004. Effect of heat stress on peroxidase activity and total protein content in strawberry plants. Plant Sci. 166:739-744.   DOI
3 Hall, A.E. 2001. Crop responses to environment. CRC Press LLC, Boca Raton, FL, USA.
4 Hasanuzzaman, M., K. Nahar, M.M. Alam, R. Roychowdhury, and M. Fujita. 2013. Physiological, biochemical, and molecular mechanisms of heat stress tolerance in plants. Intl. J. Mol. Sci. 14:9643-9684.   DOI
5 Heath, R.L. and L. Packer. 1968. Photoperoxidation in isolated chloroplasts: I. Kinetics and stoichiometry of fatty acid peroxidation. Arch. Biochem. Biophys. 125:189-198.   DOI
6 Hiscox, J.T. and G.F. Israelstam. 1979. A method for the extraction of chlorophyll from leaf tissue without maceration. Can. J. Bot. 57:1332-1334.   DOI
7 Hong, B., C. Ma, Y. Yang, T. Wang, K. Yamaguchi-Shinozaki, and J. Gao. 2009. Over-expression of AtDREB1A in chrysanthemum enhances tolerance to heat stress. Plant Mol. Biol. 70:231-240.   DOI
8 Ismail, A.M. and A.E. Hall. 1999. Reproductive-stage heat tolerance, leaf membrane thermostability and plant morphology in cowpea. Crop Sci. 39:1762-1768.   DOI
9 Jaglo-Ottosen, K.R., S.J. Gilmour, D.G. Zarka, O. Schabenberger, and M.F. Thomashow. 1998. Arabidopsis CBF1 overexpression induces COR genes and enhances freezing tolerance. Science 280:104-106.   DOI
10 Kishor, P.K., S. Sangam, R.N. Amrutha, P.S. Laxmi, K.R. Naidu, K.R.S.S. Rao, S. Rao, K.J. Reddy, P. Theriappan, and N. Sreenivasulu. 2005. Regulation of proline biosynthesis, degradation, uptake and transport in higher plants: its implications in plant growth and abiotic stress tolerance. Curr. Sci. India 88:424-438.
11 Kumar, S., R. Kaur, N. Kaur, K. Bhandhari, N. Kaushal, K. Gupta, T.S. Bains, and H. Nayyar. 2011. Heat-stress induced inhibition in growth and chlorosis in mungbean (Phaseolus aureus Roxb.) is partly mitigated by ascorbic acid application and is related to reduction in oxidative stress. Acta Physiol. Plant. 33:2091-2101.   DOI
12 Li, H.S., Q. Sun, S.J. Zhao, and W.H. Zhang. 2000. Principles and techniques of plant physiological biochemical experiment. Higher Education, Beijing, China.
13 Mcclung, C.R. and S.J. Davis. 2010. Ambient thermometers in plants: from physiological outputs towards mechanisms of thermal sensing. Curr. Biol. 20:1086-1092.   DOI
14 Mittler, R. 2006. Abiotic stress, the field environment and stress combination. Trends Plant Sci. 11:15-19.   DOI
15 Mittler, R., A. Finka, and P. Goloubinoff. 2012. How do plants feel the heat. Trends Biochem. Sci. 37:118-125.   DOI
16 Mittler, R. and E. Blumwald. 2010. Genetic engineering for modern agriculture: challenges and perspectives. Ann. Rev. Plant Biol. 61:443-462.   DOI
17 Mohammed, A.R. and L. Tarpley. 2010. Effects of high night temperature and spikelet position on yield-related parameters of rice (Oryza sativa L.) plants. Eur. J. Agron. 33:117-123.   DOI
18 Peng, J.Z., A. Li, Z.G. Huang, Z.P. Chen, F.D. Wen, and X.J. Wang. 2010. Screening for heat-tolerant variants and field identification of Gerbera hybrida. Sci. Agric. Sin. 2:022.
19 Rodriguez, M., E. Canales, and O. Borras-Hidalgo. 2005. Molecular aspects of abiotic stress in plants. Biotechnol. Appl. 22:1-10.
20 Piramila, B.H.M., A.L. Prabha, V. Nandagopalan, and A.L. Stanley. 2012. Effect of heat treatment on germination, seedling growth and some biochemical parameters of dry seeds of black gram. Int. J. Pharm. Phytopharm. Res. 1:194-202.
21 Sairam, R.K. and A. Tyagi. 2004. Physiology and molecular biology of salinity stress tolerance in plants. Curr. Sci. India 86:407.
22 Shavrukov, Y., P. Langridge, M. Tester, and E. Nevo. 2010. Wide genetic diversity of salinity tolerance, sodium exclusion and growth in wild emmer wheat, Triticum dicoccoides. Breed. Sci. 60:426-435.   DOI
23 Siddique, K.H.M., S.P. Loss, K.L. Regan, D. Tennant, and R.L. Jettner. 1999. Adaptation and seed yield of cool season grain legumes in Mediterranean environments of south-western Australia. Aust. J. Agric. Res. 50:375-388.   DOI
24 Sun, X., L. Hu, Y. Xie, and J. Fu. 2014. Evaluation of genotypic variation in heat tolerance of tall fescue by functional traits. Euphytica 199:247-260.   DOI
25 Tang, R.S., J.C. Zheng, Z.Q. Jin, D.D. Zhang, Y.H. Huang, and L.G. Chen. 2008. Possible correlation between high temperature-induced floret sterility and endogenous levels of IAA, GAs and ABA in rice (Oryza sativa L.). Plant Growth Regul. 54:37-43.
26 Tian, Z.G., F. Wang, W.E. Zhang, and X.M. Zhao. 2011. Effects of heat stress on growth and physiology of marigold cultivars. Acta Hortic. Sin. 38:1947-1954.
27 Vollenweider, P. and M.S. Gunthardt-Goerg. 2005. Diagnosis of abiotic and biotic stress factors using the visible symptoms in foliage. Environ. Pollut. 137:455-465.   DOI
28 Toh, S., A. Imamura, A. Watanabe, K. Nakabayashi, M. Okamoto, Y. Jikumaru, A. Hanada, Y. Aso, K. Ishiyama, N. Tamura, S. Iuchi, M. Kobayashi, S. Yamaguchi, Y. Kamiya, E. Nambara, and N. Kawakami. 2008. High temperature-induced abscisic acid biosynthesis and its role in the inhibition of gibberellin action in Arabidopsis seeds. Plant Physiol. 146:1368-1385.   DOI
29 Tubiello, F.N., J.F. Soussana, and S.M. Howden. 2007. Crop and pasture response to climate change. Proc. Natl. Acad. Sci. USA. 104:19686-19690.   DOI
30 Ueda A., W. Shi, T. Shimada, H. Miyake, and T. Takabe. 2008. Altered expression of barley proline transporter causes different growth responses in Arabidopsis. Planta 227:277-286.
31 Wahid, A. and T.J. Close. 2007. Expression of dehydrins under heat stress and their relationship with water relations of sugarcane leaves. Biol. Plant. 51:104-109.   DOI
32 Wahid, A., S. Gelani, M. Ashraf, and M.R. Foolad. 2007. Heat tolerance in plants: an overview. Environ. Exp. Bot. 61:199-223.   DOI
33 Wang, J.Z., L.J. Cui, Y. Wang, and J.L. Li. 2009. Growth, lipid peroxidation and photosynthesis in two tall fescue cultivars differing in heat tolerance. Biol. Plant. 53:237-242.   DOI
34 Wheeler, T.R., P.Q. Craufurd, R.H. Ellis, J.R. Porter, and P.V. Prasad. 2000. Temperature variability and the yield of annual crops. Agric. Ecosyst. Environ. 82:159-167.   DOI
35 Xu, S., J. Li, X. Zhang, H. Wei, and L. Cui. 2006. Effects of heat acclimation pretreatment on changes of membrane lipid peroxidation, antioxidant metabolites, and ultrastructure of chloroplasts in two cool-season turfgrass species under heat stress. Environ. Exp. Bot. 56:274-285.   DOI
36 Bates, L.S., R.P. Waldren, and I.D. Teare. 1973. Rapid determination of free proline for water-stress studies. Plant Soil 39:205-207.   DOI
37 Xu, Z.Z. and G.S. Zhou. 2006. Combined effects of water stress and high temperature on photosynthesis, nitrogen metabolism and lipid peroxidation of a perennial grass Leymus chinensis. Planta 224:1080-1090.   DOI
38 Young, L.W., R.W. Wilen, and P.C. Bonham-Smith. 2004. High temperature stress of Brassica napus during flowering reduces micro-and megagametophyte fertility, induces fruit abortion, and disrupts seed production. J. Exp. Bot. 55:485-495.   DOI
39 Zhang, X., J. Cai, B. Wollenweber, F. Liu, T. Dai, W. Cao, and D. Jiang. 2013. Multiple heat and drought events affect grain yield and accumulations of high molecular weight glutenin subunits and glutenin macropolymers in wheat. J. Cereal Sci. 57:134-140.   DOI
40 Ahuja, I., R.C. de Vos, A.M. Bones, and R.D. Hall. 2010. Plant molecular stress responses face climate change. Trends Plant Sci. 15:664-674.   DOI
41 Bradford, M.M. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72:48-254.
42 Camejo, D., A. Jimenez, J.J. Alarcon, W. Torres, J.M. Gomez, and F. Sevilla. 2006. Changes in photosynthetic parameters and antioxidant activities following heat-shock treatment in tomato plants. Funct. Plant Biol. 33:177-187.   DOI
43 Chaitanya, K.V., D. Sundar, and A.R. Reddy. 2001. Mulberry leaf metabolism under high temperature stress. Biol. Plant. 44:379-384.   DOI
44 Crafts-Brandner, S.J. and M.E. Salvucci. 2002. Sensitivity of photosynthesis in a C4 plant, maize, to heat stress. Plant Physiol. 129:1773-1780.   DOI
45 Deng, Y., S. Chen, F. Chen, X. Cheng, and F. Zhang. 2011. The embryo rescue derived intergeneric hybrid between chrysanthemum and Ajania przewalskii shows enhanced cold tolerance. Plant Cell Rep. 30:2177-2186.   DOI
46 Doganlar, Z.B., K. Demir, H. Basak, and I. Gul. 2010. Effects of salt stress on pigment and total soluble protein contents of three different tomato cultivars. Afr. J. Agric. Res. 5:2056-2065.
47 Fan, H., C. Du, Y. Xu, and X. Wu, 2014. Exogenous nitric oxide improves chilling tolerance of Chinese cabbage seedlings by affecting antioxidant enzymes in leaves. Hortic. Environ. Biotechnol. 55:159-165.   DOI
48 Giaveno, C. and J. Ferrero. 2003. Introduction of tropical maize genotypes to increase silage production in the central area of Santa Fe, Argentina. Crop Breed. Appl. Biotechnol. 3:89-94.   DOI